/* AppleWin : An Apple //e emulator for Windows Copyright (C) 1994-1996, Michael O'Brien Copyright (C) 1999-2001, Oliver Schmidt Copyright (C) 2002-2005, Tom Charlesworth Copyright (C) 2006-2010, Tom Charlesworth, Michael Pohoreski, Nick Westgate AppleWin is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. AppleWin is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with AppleWin; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* Description: Emulation of video modes * * Author: Various */ #include "StdAfx.h" #include "Applewin.h" #include "CPU.h" #include "Memory.h" #include "Registry.h" #include "Video.h" #include "NTSC.h" #include "RGBMonitor.h" #include "Frame.h" #include "YamlHelper.h" #define SW_80COL (g_uVideoMode & VF_80COL) #define SW_DHIRES (g_uVideoMode & VF_DHIRES) #define SW_HIRES (g_uVideoMode & VF_HIRES) #define SW_80STORE (g_uVideoMode & VF_80STORE) #define SW_MIXED (g_uVideoMode & VF_MIXED) #define SW_PAGE2 (g_uVideoMode & VF_PAGE2) #define SW_TEXT (g_uVideoMode & VF_TEXT) // Globals (Public) uint8_t *g_pFramebufferbits = NULL; // last drawn frame int g_nAltCharSetOffset = 0; // alternate character set // Globals (Private) // video scanner constants int const kHBurstClock = 53; // clock when Color Burst starts int const kHBurstClocks = 4; // clocks per Color Burst duration int const kHClock0State = 0x18; // H[543210] = 011000 int const kHClocks = 65; // clocks per horizontal scan (including HBL) int const kHPEClock = 40; // clock when HPE (horizontal preset enable) goes low int const kHPresetClock = 41; // clock when H state presets int const kHSyncClock = 49; // clock when HSync starts int const kHSyncClocks = 4; // clocks per HSync duration int const kNTSCScanLines = 262; // total scan lines including VBL (NTSC) int const kNTSCVSyncLine = 224; // line when VSync starts (NTSC) int const kPALScanLines = 312; // total scan lines including VBL (PAL) int const kPALVSyncLine = 264; // line when VSync starts (PAL) int const kVLine0State = 0x100; // V[543210CBA] = 100000000 int const kVPresetLine = 256; // line when V state presets int const kVSyncLines = 4; // lines per VSync duration int const kVDisplayableScanLines = 192; // max displayable scanlines static COLORREF customcolors[256]; // MONOCHROME is last custom color static LPBITMAPINFO g_pFramebufferinfo = NULL; COLORREF g_nMonochromeRGB = RGB(0xC0,0xC0,0xC0); uint32_t g_uVideoMode = VF_TEXT; // Current Video Mode (this is the last set one as it may change mid-scan line!) DWORD g_eVideoType = VT_DEFAULT; static VideoStyle_e g_eVideoStyle = VS_HALF_SCANLINES; static bool g_bVideoScannerNTSC = true; // NTSC video scanning (or PAL) // NOTE: KEEP IN SYNC: VideoType_e g_aVideoChoices g_apVideoModeDesc // The window title will be set to this. const char *g_apVideoModeDesc[ NUM_VIDEO_MODES ] = { "Monochrome (Custom)" , "Color (Composite Idealized)" , "Color (RGB Card/Monitor)" , "Color (Composite Monitor)" , "Color TV" , "B&W TV" , "Monochrome (Amber)" , "Monochrome (Green)" , "Monochrome (White)" }; static void videoCreateDIBSection(); void VideoInitialize () { // RESET THE VIDEO MODE SWITCHES AND THE CHARACTER SET OFFSET VideoResetState(); g_pFramebufferinfo = (LPBITMAPINFO)VirtualAlloc( NULL, sizeof(BITMAPINFOHEADER) + 256*sizeof(RGBQUAD), MEM_COMMIT, PAGE_READWRITE); ZeroMemory(g_pFramebufferinfo,sizeof(BITMAPINFOHEADER)+256*sizeof(RGBQUAD)); g_pFramebufferinfo->bmiHeader.biSize = sizeof(BITMAPINFOHEADER); g_pFramebufferinfo->bmiHeader.biWidth = GetFrameBufferWidth(); g_pFramebufferinfo->bmiHeader.biHeight = GetFrameBufferHeight(); g_pFramebufferinfo->bmiHeader.biPlanes = 1; g_pFramebufferinfo->bmiHeader.biBitCount = 32; g_pFramebufferinfo->bmiHeader.biCompression = BI_RGB; g_pFramebufferinfo->bmiHeader.biClrUsed = 0; videoCreateDIBSection(); } void VideoDestroy () { // DESTROY BUFFERS VirtualFree(g_pFramebufferinfo,0,MEM_RELEASE); g_pFramebufferinfo = NULL; free(g_pFramebufferbits); g_pFramebufferbits = NULL; } void VideoReinitialize (bool bInitVideoScannerAddress /*= true*/) { NTSC_VideoReinitialize( g_dwCyclesThisFrame, bInitVideoScannerAddress ); NTSC_VideoInitAppleType(); NTSC_SetVideoStyle(); NTSC_SetVideoTextMode( g_uVideoMode & VF_80COL ? 80 : 40 ); NTSC_SetVideoMode( g_uVideoMode ); // Pre-condition: g_nVideoClockHorz (derived from g_dwCyclesThisFrame) } void VideoResetState () { g_nAltCharSetOffset = 0; g_uVideoMode = VF_TEXT; NTSC_SetVideoTextMode( 40 ); NTSC_SetVideoMode( g_uVideoMode ); RGB_ResetState(); } BYTE VideoSetMode(WORD, WORD address, BYTE write, BYTE, ULONG uExecutedCycles) { address &= 0xFF; const uint32_t oldVideoMode = g_uVideoMode; switch (address) { case 0x00: g_uVideoMode &= ~VF_80STORE; break; case 0x01: g_uVideoMode |= VF_80STORE; break; case 0x0C: if (!IS_APPLE2){g_uVideoMode &= ~VF_80COL; NTSC_SetVideoTextMode(40);}; break; case 0x0D: if (!IS_APPLE2){g_uVideoMode |= VF_80COL; NTSC_SetVideoTextMode(80);}; break; case 0x0E: if (!IS_APPLE2) g_nAltCharSetOffset = 0; break; // Alternate char set off case 0x0F: if (!IS_APPLE2) g_nAltCharSetOffset = 256; break; // Alternate char set on case 0x50: g_uVideoMode &= ~VF_TEXT; break; case 0x51: g_uVideoMode |= VF_TEXT; break; case 0x52: g_uVideoMode &= ~VF_MIXED; break; case 0x53: g_uVideoMode |= VF_MIXED; break; case 0x54: g_uVideoMode &= ~VF_PAGE2; break; case 0x55: g_uVideoMode |= VF_PAGE2; break; case 0x56: g_uVideoMode &= ~VF_HIRES; break; case 0x57: g_uVideoMode |= VF_HIRES; break; case 0x5E: if (!IS_APPLE2) g_uVideoMode |= VF_DHIRES; break; case 0x5F: if (!IS_APPLE2) g_uVideoMode &= ~VF_DHIRES; break; } if (!IS_APPLE2) RGB_SetVideoMode(address); bool delay = true; if ((oldVideoMode ^ g_uVideoMode) & VF_PAGE2) delay = false; // PAGE2 flag changed state, so no 1 cycle delay (GH#656) NTSC_SetVideoMode( g_uVideoMode, delay ); return MemReadFloatingBus(uExecutedCycles); } //=========================================================================== bool VideoGetSW80COL(void) { return SW_80COL ? true : false; } bool VideoGetSWDHIRES(void) { return SW_DHIRES ? true : false; } bool VideoGetSWHIRES(void) { return SW_HIRES ? true : false; } bool VideoGetSW80STORE(void) { return SW_80STORE ? true : false; } bool VideoGetSWMIXED(void) { return SW_MIXED ? true : false; } bool VideoGetSWPAGE2(void) { return SW_PAGE2 ? true : false; } bool VideoGetSWTEXT(void) { return SW_TEXT ? true : false; } bool VideoGetSWAltCharSet(void) { return g_nAltCharSetOffset != 0; } //=========================================================================== // // References to Jim Sather's books are given as eg: // UTAIIe:5-7,P3 (Understanding the Apple IIe, chapter 5, page 7, Paragraph 3) // WORD VideoGetScannerAddress(DWORD nCycles, VideoScanner_e videoScannerAddr /*= VS_FullAddr*/) { // machine state switches // bool bHires = VideoGetSWHIRES() && !VideoGetSWTEXT(); bool bPage2 = VideoGetSWPAGE2(); bool b80Store = VideoGetSW80STORE(); // calculate video parameters according to display standard // const int kScanLines = g_bVideoScannerNTSC ? kNTSCScanLines : kPALScanLines; const int kScanCycles = kScanLines * kHClocks; _ASSERT(nCycles < (UINT)kScanCycles); nCycles %= kScanCycles; // calculate horizontal scanning state // int nHClock = (nCycles + kHPEClock) % kHClocks; // which horizontal scanning clock int nHState = kHClock0State + nHClock; // H state bits if (nHClock >= kHPresetClock) // check for horizontal preset { nHState -= 1; // correct for state preset (two 0 states) } int h_0 = (nHState >> 0) & 1; // get horizontal state bits int h_1 = (nHState >> 1) & 1; int h_2 = (nHState >> 2) & 1; int h_3 = (nHState >> 3) & 1; int h_4 = (nHState >> 4) & 1; int h_5 = (nHState >> 5) & 1; // calculate vertical scanning state (UTAIIe:3-15,T3.2) // int nVLine = nCycles / kHClocks; // which vertical scanning line int nVState = kVLine0State + nVLine; // V state bits if (nVLine >= kVPresetLine) // check for previous vertical state preset { nVState -= kScanLines; // compensate for preset } int v_A = (nVState >> 0) & 1; // get vertical state bits int v_B = (nVState >> 1) & 1; int v_C = (nVState >> 2) & 1; int v_0 = (nVState >> 3) & 1; int v_1 = (nVState >> 4) & 1; int v_2 = (nVState >> 5) & 1; int v_3 = (nVState >> 6) & 1; int v_4 = (nVState >> 7) & 1; int v_5 = (nVState >> 8) & 1; // calculate scanning memory address // if (bHires && SW_MIXED && v_4 && v_2) // HIRES TIME signal (UTAIIe:5-7,P3) { bHires = false; // address is in text memory for mixed hires } int nAddend0 = 0x0D; // 1 1 0 1 int nAddend1 = (h_5 << 2) | (h_4 << 1) | (h_3 << 0); int nAddend2 = (v_4 << 3) | (v_3 << 2) | (v_4 << 1) | (v_3 << 0); int nSum = (nAddend0 + nAddend1 + nAddend2) & 0x0F; // SUM (UTAIIe:5-9) WORD nAddressH = 0; // build address from video scanner equations (UTAIIe:5-8,T5.1) nAddressH |= h_0 << 0; // a0 nAddressH |= h_1 << 1; // a1 nAddressH |= h_2 << 2; // a2 nAddressH |= nSum << 3; // a3 - a6 if (!bHires) { // Apple ][ (not //e) and HBL? // if (IS_APPLE2 && // Apple II only (UTAIIe:I-4,#5) !h_5 && (!h_4 || !h_3)) // HBL (UTAIIe:8-10,F8.5) { nAddressH |= 1 << 12; // Y: a12 (add $1000 to address!) } } WORD nAddressV = 0; nAddressV |= v_0 << 7; // a7 nAddressV |= v_1 << 8; // a8 nAddressV |= v_2 << 9; // a9 int p2a = !(bPage2 && !b80Store) ? 1 : 0; int p2b = (bPage2 && !b80Store) ? 1 : 0; WORD nAddressP = 0; // Page bits if (bHires) // hires? { // Y: insert hires-only address bits // nAddressV |= v_A << 10; // a10 nAddressV |= v_B << 11; // a11 nAddressV |= v_C << 12; // a12 nAddressP |= p2a << 13; // a13 nAddressP |= p2b << 14; // a14 } else { // N: insert text-only address bits // nAddressP |= p2a << 10; // a10 nAddressP |= p2b << 11; // a11 } // VBL' = v_4' | v_3' = (v_4 & v_3)' (UTAIIe:5-10,#3), (UTAIIe:3-15,T3.2) if (videoScannerAddr == VS_PartialAddrH) return nAddressH; if (videoScannerAddr == VS_PartialAddrV) return nAddressV; return nAddressP | nAddressV | nAddressH; } //=========================================================================== // Called when *outside* of CpuExecute() bool VideoGetVblBarEx(const DWORD dwCyclesThisFrame) { if (g_bFullSpeed) { // Ensure that NTSC video-scanner gets updated during full-speed, so video screen can be redrawn during Apple II VBL NTSC_VideoClockResync(dwCyclesThisFrame); } return g_nVideoClockVert < kVDisplayableScanLines; } // Called when *inside* CpuExecute() bool VideoGetVblBar(const DWORD uExecutedCycles) { if (g_bFullSpeed) { // Ensure that NTSC video-scanner gets updated during full-speed, so video-dependent Apple II code doesn't hang NTSC_VideoClockResync(CpuGetCyclesThisVideoFrame(uExecutedCycles)); } return g_nVideoClockVert < kVDisplayableScanLines; } //=========================================================================== static const UINT kVideoRomSize8K = kVideoRomSize4K*2; static const UINT kVideoRomSize16K = kVideoRomSize8K*2; static const UINT kVideoRomSizeMax = kVideoRomSize16K; static BYTE g_videoRom[kVideoRomSizeMax]; static UINT g_videoRomSize = 0; static bool g_videoRomRockerSwitch = false; bool ReadVideoRomFile(const TCHAR* pRomFile) { g_videoRomSize = 0; HANDLE h = CreateFile(pRomFile, GENERIC_READ, 0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_READONLY, NULL); if (h == INVALID_HANDLE_VALUE) return false; const ULONG size = GetFileSize(h, NULL); if (size == kVideoRomSize2K || size == kVideoRomSize4K || size == kVideoRomSize8K || size == kVideoRomSize16K) { DWORD bytesRead; if (ReadFile(h, g_videoRom, size, &bytesRead, NULL) && bytesRead == size) g_videoRomSize = size; } if (g_videoRomSize == kVideoRomSize16K) { // Use top 8K (assume bottom 8K is all 0xFF's) memcpy(&g_videoRom[0], &g_videoRom[kVideoRomSize8K], kVideoRomSize8K); g_videoRomSize = kVideoRomSize8K; } CloseHandle(h); return g_videoRomSize != 0; } UINT GetVideoRom(const BYTE*& pVideoRom) { pVideoRom = &g_videoRom[0]; return g_videoRomSize; } bool GetVideoRomRockerSwitch(void) { return g_videoRomRockerSwitch; } void SetVideoRomRockerSwitch(bool state) { g_videoRomRockerSwitch = state; } bool IsVideoRom4K(void) { return g_videoRomSize <= kVideoRomSize4K; } //=========================================================================== enum VideoType127_e { VT127_MONO_CUSTOM , VT127_COLOR_MONITOR_NTSC , VT127_MONO_TV , VT127_COLOR_TV , VT127_MONO_AMBER , VT127_MONO_GREEN , VT127_MONO_WHITE , VT127_NUM_VIDEO_MODES }; void Config_Load_Video() { DWORD dwTmp; REGLOAD_DEFAULT(TEXT(REGVALUE_VIDEO_MODE), &dwTmp, (DWORD)VT_DEFAULT); g_eVideoType = dwTmp; REGLOAD_DEFAULT(TEXT(REGVALUE_VIDEO_STYLE), &dwTmp, (DWORD)VS_HALF_SCANLINES); g_eVideoStyle = (VideoStyle_e)dwTmp; REGLOAD_DEFAULT(TEXT(REGVALUE_VIDEO_MONO_COLOR), &dwTmp, (DWORD)RGB(0xC0, 0xC0, 0xC0)); g_nMonochromeRGB = (COLORREF)dwTmp; REGLOAD_DEFAULT(TEXT(REGVALUE_VIDEO_REFRESH_RATE), &dwTmp, (DWORD)VR_60HZ); SetVideoRefreshRate((VideoRefreshRate_e)dwTmp); if (g_eVideoType >= NUM_VIDEO_MODES) g_eVideoType = VT_DEFAULT; } //=========================================================================== VideoType_e GetVideoType(void) { return (VideoType_e) g_eVideoType; } // TODO: Can only do this at start-up (mid-emulation requires a more heavy-weight video reinit) void SetVideoType(VideoType_e newVideoType) { g_eVideoType = newVideoType; } VideoStyle_e GetVideoStyle(void) { return g_eVideoStyle; } void SetVideoStyle(VideoStyle_e newVideoStyle) { g_eVideoStyle = newVideoStyle; } bool IsVideoStyle(VideoStyle_e mask) { return (g_eVideoStyle & mask) != 0; } //=========================================================================== VideoRefreshRate_e GetVideoRefreshRate(void) { return (g_bVideoScannerNTSC == false) ? VR_50HZ : VR_60HZ; } void SetVideoRefreshRate(VideoRefreshRate_e rate) { if (rate != VR_50HZ) rate = VR_60HZ; g_bVideoScannerNTSC = (rate == VR_60HZ); NTSC_SetRefreshRate(rate); } void Video_ResetScreenshotCounter( const std::string & pImageName ) { } void VideoRedrawScreen (void) { // NB. Can't rely on g_uVideoMode being non-zero (ie. so it can double up as a flag) since 'GR,PAGE1,non-mixed' mode == 0x00. VideoRefreshScreen( g_uVideoMode, true ); } void VideoRefreshScreen ( uint32_t uRedrawWholeScreenVideoMode /* =0*/, bool bRedrawWholeScreen /* =false*/ ) { if (bRedrawWholeScreen) { // uVideoModeForWholeScreen set if: // . MODE_DEBUG : always // . MODE_RUNNING : called from VideoRedrawScreen(), eg. during full-speed if (bRedrawWholeScreen) NTSC_SetVideoMode( uRedrawWholeScreenVideoMode ); NTSC_VideoRedrawWholeScreen(); } } static void videoCreateDIBSection() { const size_t size = GetFrameBufferWidth()*GetFrameBufferHeight()*sizeof(bgra_t); void * memory = malloc(size); g_pFramebufferbits = static_cast(memory); // DRAW THE SOURCE IMAGE INTO THE SOURCE BIT BUFFER ZeroMemory( g_pFramebufferbits, size); // CREATE THE OFFSET TABLE FOR EACH SCAN LINE IN THE FRAME BUFFER NTSC_VideoInit( g_pFramebufferbits ); } void getScreenData(uint8_t * & data, int & width, int & height, int & sx, int & sy, int & sw, int & sh) { data = g_pFramebufferbits; width = GetFrameBufferWidth(); height = GetFrameBufferHeight(); sx = GetFrameBufferBorderWidth(); sy = GetFrameBufferBorderHeight(); sw = GetFrameBufferBorderlessWidth(); sh = GetFrameBufferBorderlessHeight(); } #define SS_YAML_KEY_ALT_CHARSET "Alt Char Set" #define SS_YAML_KEY_VIDEO_MODE "Video Mode" #define SS_YAML_KEY_CYCLES_THIS_FRAME "Cycles This Frame" #define SS_YAML_KEY_VIDEO_REFRESH_RATE "Video Refresh Rate" static std::string VideoGetSnapshotStructName(void) { static const std::string name("Video"); return name; } void VideoSaveSnapshot(YamlSaveHelper& yamlSaveHelper) { YamlSaveHelper::Label state(yamlSaveHelper, "%s:\n", VideoGetSnapshotStructName().c_str()); yamlSaveHelper.SaveBool(SS_YAML_KEY_ALT_CHARSET, g_nAltCharSetOffset ? true : false); yamlSaveHelper.SaveHexUint32(SS_YAML_KEY_VIDEO_MODE, g_uVideoMode); yamlSaveHelper.SaveUint(SS_YAML_KEY_CYCLES_THIS_FRAME, g_dwCyclesThisFrame); yamlSaveHelper.SaveUint(SS_YAML_KEY_VIDEO_REFRESH_RATE, (UINT)GetVideoRefreshRate()); } void VideoLoadSnapshot(YamlLoadHelper& yamlLoadHelper, UINT version) { if (!yamlLoadHelper.GetSubMap(VideoGetSnapshotStructName())) return; if (version >= 4) { VideoRefreshRate_e rate = (VideoRefreshRate_e)yamlLoadHelper.LoadUint(SS_YAML_KEY_VIDEO_REFRESH_RATE); SetVideoRefreshRate(rate); // Trashes: g_dwCyclesThisFrame SetCurrentCLK6502(); } g_nAltCharSetOffset = yamlLoadHelper.LoadBool(SS_YAML_KEY_ALT_CHARSET) ? 256 : 0; g_uVideoMode = yamlLoadHelper.LoadUint(SS_YAML_KEY_VIDEO_MODE); g_dwCyclesThisFrame = yamlLoadHelper.LoadUint(SS_YAML_KEY_CYCLES_THIS_FRAME); yamlLoadHelper.PopMap(); } void Config_Save_Video() { REGSAVE(TEXT(REGVALUE_VIDEO_MODE) ,g_eVideoType); REGSAVE(TEXT(REGVALUE_VIDEO_STYLE) ,g_eVideoStyle); REGSAVE(TEXT(REGVALUE_VIDEO_MONO_COLOR),g_nMonochromeRGB); REGSAVE(TEXT(REGVALUE_VIDEO_REFRESH_RATE), GetVideoRefreshRate()); }