BetterJoy/BetterJoyForCemu/MadgwickAHRS.cs

162 lines
6.3 KiB
C#

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
// source: https://github.com/xioTechnologies/Open-Source-AHRS-With-x-IMU/blob/master/x-IMU%20IMU%20and%20AHRS%20Algorithms/x-IMU%20IMU%20and%20AHRS%20Algorithms/AHRS/MadgwickAHRS.cs
namespace BetterJoyForCemu {
/// <summary>
/// MadgwickAHRS class. Implementation of Madgwick's IMU and AHRS algorithms.
/// </summary>
/// <remarks>
/// See: http://www.x-io.co.uk/node/8#open_source_ahrs_and_imu_algorithms
/// </remarks>
public class MadgwickAHRS {
/// <summary>
/// Gets or sets the sample period.
/// </summary>
public float SamplePeriod { get; set; }
/// <summary>
/// Gets or sets the algorithm gain beta.
/// </summary>
public float Beta { get; set; }
/// <summary>
/// Gets or sets the Quaternion output.
/// </summary>
public float[] Quaternion { get; set; }
public float[] old_pitchYawRoll { get; set; }
/// <summary>
/// Initializes a new instance of the <see cref="MadgwickAHRS"/> class.
/// </summary>
/// <param name="samplePeriod">
/// Sample period.
/// </param>
public MadgwickAHRS(float samplePeriod)
: this(samplePeriod, 1f) {
}
/// <summary>
/// Initializes a new instance of the <see cref="MadgwickAHRS"/> class.
/// </summary>
/// <param name="samplePeriod">
/// Sample period.
/// </param>
/// <param name="beta">
/// Algorithm gain beta.
/// </param>
public MadgwickAHRS(float samplePeriod, float beta) {
SamplePeriod = samplePeriod;
Beta = beta;
Quaternion = new float[] { 1f, 0f, 0f, 0f };
old_pitchYawRoll = new float[] { 0f, 0f, 0f };
}
/// <summary>
/// Algorithm IMU update method. Requires only gyroscope and accelerometer data.
/// </summary>
/// <param name="gx">
/// Gyroscope x axis measurement in radians/s.
/// </param>
/// <param name="gy">
/// Gyroscope y axis measurement in radians/s.
/// </param>
/// <param name="gz">
/// Gyroscope z axis measurement in radians/s.
/// </param>
/// <param name="ax">
/// Accelerometer x axis measurement in any calibrated units.
/// </param>
/// <param name="ay">
/// Accelerometer y axis measurement in any calibrated units.
/// </param>
/// <param name="az">
/// Accelerometer z axis measurement in any calibrated units.
/// </param>
/// <remarks>
/// Optimised for minimal arithmetic.
/// Total ±: 45
/// Total *: 85
/// Total /: 3
/// Total sqrt: 3
/// </remarks>
public void Update(float gx, float gy, float gz, float ax, float ay, float az) {
float q1 = Quaternion[0], q2 = Quaternion[1], q3 = Quaternion[2], q4 = Quaternion[3]; // short name local variable for readability
float norm;
float s1, s2, s3, s4;
float qDot1, qDot2, qDot3, qDot4;
// Auxiliary variables to avoid repeated arithmetic
float _2q1 = 2f * q1;
float _2q2 = 2f * q2;
float _2q3 = 2f * q3;
float _2q4 = 2f * q4;
float _4q1 = 4f * q1;
float _4q2 = 4f * q2;
float _4q3 = 4f * q3;
float _8q2 = 8f * q2;
float _8q3 = 8f * q3;
float q1q1 = q1 * q1;
float q2q2 = q2 * q2;
float q3q3 = q3 * q3;
float q4q4 = q4 * q4;
// Normalise accelerometer measurement
norm = (float)Math.Sqrt(ax * ax + ay * ay + az * az);
if (norm == 0f) return; // handle NaN
norm = 1 / norm; // use reciprocal for division
ax *= norm;
ay *= norm;
az *= norm;
// Gradient decent algorithm corrective step
s1 = _4q1 * q3q3 + _2q3 * ax + _4q1 * q2q2 - _2q2 * ay;
s2 = _4q2 * q4q4 - _2q4 * ax + 4f * q1q1 * q2 - _2q1 * ay - _4q2 + _8q2 * q2q2 + _8q2 * q3q3 + _4q2 * az;
s3 = 4f * q1q1 * q3 + _2q1 * ax + _4q3 * q4q4 - _2q4 * ay - _4q3 + _8q3 * q2q2 + _8q3 * q3q3 + _4q3 * az;
s4 = 4f * q2q2 * q4 - _2q2 * ax + 4f * q3q3 * q4 - _2q3 * ay;
norm = 1f / (float)Math.Sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude
s1 *= norm;
s2 *= norm;
s3 *= norm;
s4 *= norm;
// Compute rate of change of quaternion
qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - Beta * s1;
qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - Beta * s2;
qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - Beta * s3;
qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - Beta * s4;
// Integrate to yield quaternion
q1 += qDot1 * SamplePeriod;
q2 += qDot2 * SamplePeriod;
q3 += qDot3 * SamplePeriod;
q4 += qDot4 * SamplePeriod;
norm = 1f / (float)Math.Sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
Quaternion[0] = q1 * norm;
Quaternion[1] = q2 * norm;
Quaternion[2] = q3 * norm;
Quaternion[3] = q4 * norm;
}
public float[] GetEulerAngles() {
float[] pitchYawRoll = new float[3];
float q0 = Quaternion[0], q1 = Quaternion[1], q2 = Quaternion[2], q3 = Quaternion[3];
float sq1 = q1 * q1, sq2 = q2 * q2, sq3 = q3 * q3;
pitchYawRoll[0] = (float)Math.Asin(2f * (q0 * q2 - q3 * q1)); // Pitch
pitchYawRoll[1] = (float)Math.Atan2(2f * (q0 * q3 + q1 * q2), 1 - 2f * (sq2 + sq3)); // Yaw
pitchYawRoll[2] = (float)Math.Atan2(2f * (q0 * q1 + q2 * q3), 1 - 2f * (sq1 + sq2)); // Roll
float[] returnAngles = new float[6];
Array.Copy(pitchYawRoll, returnAngles, 3);
Array.Copy(old_pitchYawRoll, 0, returnAngles, 3, 3);
old_pitchYawRoll = pitchYawRoll;
return returnAngles;
}
}
}