#include "stdafx.h" #include "GbWaveChannel.h" #include "GbApu.h" GbWaveChannel::GbWaveChannel(GbApu* apu) { _apu = apu; } GbWaveState GbWaveChannel::GetState() { return _state; } bool GbWaveChannel::Enabled() { return _state.Enabled; } void GbWaveChannel::Disable() { uint16_t len = _state.Length; uint8_t ram[0x10]; memcpy(ram, _state.Ram, sizeof(ram)); _state = {}; _state.Length = len; memcpy(_state.Ram, ram, sizeof(ram)); } void GbWaveChannel::ClockLengthCounter() { if(_state.LengthEnabled && _state.Length > 0) { _state.Length--; if(_state.Length == 0) { //"Length becoming 0 should clear status" _state.Enabled = false; } } } uint8_t GbWaveChannel::GetOutput() { return _state.Output; } void GbWaveChannel::Exec(uint32_t clocksToRun) { _state.Timer -= clocksToRun; //The DAC receives the current value from the upper/lower nibble of the sample buffer, shifted right by the volume control. if(_state.Volume && _state.Enabled) { _state.Output = _state.SampleBuffer >> (_state.Volume - 1); } else { _state.Output = 0; } if(_state.Timer == 0) { //The wave channel's frequency timer period is set to (2048-frequency)*2. _state.Timer = (2048 - _state.Frequency) * 2; //When the timer generates a clock, the position counter is advanced one sample in the wave table, //looping back to the beginning when it goes past the end, _state.Position = (_state.Position + 1) & 0x1F; //then a sample is read into the sample buffer from this NEW position. if(_state.Position & 0x01) { _state.SampleBuffer = _state.Ram[_state.Position >> 1] & 0x0F; } else { _state.SampleBuffer = _state.Ram[_state.Position >> 1] >> 4; } } } uint8_t GbWaveChannel::Read(uint16_t addr) { constexpr uint8_t openBusBits[5] = { 0x7F, 0xFF, 0x9F, 0xFF, 0xBF }; uint8_t value = 0; switch(addr) { case 0: value = _state.DacEnabled ? 0x80 : 0; break; case 2: value = _state.Volume << 5; break; case 4: value = _state.LengthEnabled ? 0x40 : 0; break; } return value | openBusBits[addr]; } void GbWaveChannel::Write(uint16_t addr, uint8_t value) { switch(addr) { case 0: _state.DacEnabled = (value & 0x80) != 0; _state.Enabled &= _state.DacEnabled; break; case 1: _state.Length = 256 - value; break; case 2: _state.Volume = (value & 0x60) >> 5; break; case 3: _state.Frequency = (_state.Frequency & 0x700) | value; break; case 4: { _state.Frequency = (_state.Frequency & 0xFF) | ((value & 0x07) << 8); if(value & 0x80) { //Start playback //Channel is enabled, if DAC is enabled _state.Enabled = _state.DacEnabled; //Frequency timer is reloaded with period. _state.Timer = (2048 - _state.Frequency) * 2; //If length counter is zero, it is set to 64 (256 for wave channel). if(_state.Length == 0) { _state.Length = 256; _state.LengthEnabled = false; } //Wave channel's position is set to 0 but sample buffer is NOT refilled. _state.Position = 0; } _apu->ProcessLengthEnableFlag(value, _state.Length, _state.LengthEnabled, _state.Enabled); break; } } } void GbWaveChannel::WriteRam(uint16_t addr, uint8_t value) { _state.Ram[addr & 0x0F] = value; } uint8_t GbWaveChannel::ReadRam(uint16_t addr) { return _state.Ram[addr & 0x0F]; } void GbWaveChannel::Serialize(Serializer& s) { s.Stream( _state.DacEnabled, _state.SampleBuffer, _state.Position, _state.Volume, _state.Frequency, _state.Length, _state.LengthEnabled, _state.Enabled, _state.Timer, _state.Output ); s.StreamArray(_state.Ram, 0x10); }