#include "stdafx.h" #include "Spc.h" #include "Console.h" #include "MemoryManager.h" #include "SoundMixer.h" #include "EmuSettings.h" #include "SpcFileData.h" #ifndef DUMMYSPC #include "SPC_DSP.h" #else #undef Spc #include "SPC_DSP.h" #define Spc DummySpc #endif #include "../Utilities/Serializer.h" Spc::Spc(Console* console) { _console = console; _memoryManager = console->GetMemoryManager().get(); _soundBuffer = new int16_t[Spc::SampleBufferSize]; _ram = new uint8_t[Spc::SpcRamSize]; _console->GetSettings()->InitializeRam(_ram, Spc::SpcRamSize); _dsp.reset(new SPC_DSP()); #ifndef DUMMYSPC _dsp->init(this, _console->GetSettings().get(), _ram); #endif _dsp->reset(); _dsp->set_output(_soundBuffer, Spc::SampleBufferSize >> 1); _state = {}; _state.WriteEnabled = true; _state.TimersEnabled = true; _state.RomEnabled = true; _state.SP = 0xFF; _state.PC = ReadWord(Spc::ResetVector); _state.StopState = CpuStopState::Running; _opCode = 0; _opStep = SpcOpStep::ReadOpCode; _opSubStep = 0; _tmp1 = 0; _tmp2 = 0; _tmp3 = 0; _operandA = 0; _operandB = 0; _enabled = true; UpdateClockRatio(); } #ifndef DUMMYSPC Spc::~Spc() { delete[] _soundBuffer; delete[] _ram; } #endif void Spc::Reset() { _state.StopState = CpuStopState::Running; _state.Timer0.Reset(); _state.Timer1.Reset(); _state.Timer2.Reset(); //Resetting appears to reset the values the main CPU can read (not doing this causes a freeze in Kaite Tsukette Asoberu Dezaemon) _state.OutputReg[0] = 0; _state.OutputReg[1] = 0; _state.OutputReg[2] = 0; _state.OutputReg[3] = 0; _state.RomEnabled = true; _state.Cycle = 0; _state.PC = ReadWord(Spc::ResetVector); _opCode = 0; _opStep = SpcOpStep::ReadOpCode; _opSubStep = 0; _tmp1 = 0; _tmp2 = 0; _tmp3 = 0; _operandA = 0; _operandB = 0; _dsp->soft_reset(); _dsp->set_output(_soundBuffer, Spc::SampleBufferSize >> 1); } void Spc::SetSpcState(bool enabled) { //Used by overclocking logic to disable SPC during the extra scanlines added to the PPU if(_enabled != enabled) { if(enabled) { //When re-enabling, adjust the cycle counter to prevent running extra cycles UpdateClockRatio(); } else { //Catch up SPC before disabling it Run(); } _enabled = enabled; } } void Spc::UpdateClockRatio() { _clockRatio = (double)(Spc::SpcSampleRate * 64) / _console->GetMasterClockRate(); //If the target cycle is off by more than 10 cycles, reset the counter to match what was expected //This can happen due to overclocking (which disables the SPC for some scanlines) or if the SPC's //internal sample rate is changed between versions (e.g 32000hz -> 32040hz) uint64_t targetCycle = (uint64_t)(_memoryManager->GetMasterClock() * _clockRatio); if(std::abs((int64_t)targetCycle - (int64_t)_state.Cycle) > 10) { _state.Cycle = targetCycle; } } void Spc::Idle() { IncCycleCount(-1); } void Spc::DummyRead() { Read(_state.PC, MemoryOperationType::DummyRead); } void Spc::DummyRead(uint16_t addr) { Read(addr, MemoryOperationType::DummyRead); } void Spc::IncCycleCount(int32_t addr) { static constexpr uint8_t cpuWait[4] = { 2, 4, 10, 20 }; static constexpr uint8_t timerMultiplier[4] = { 2, 4, 8, 16 }; uint8_t speedSelect; if(addr < 0 || ((addr & 0xFFF0) == 0x00F0) || (addr >= 0xFFC0 && _state.RomEnabled)) { //Use internal speed (bits 4-5) for idle cycles, register access or IPL rom access speedSelect = _state.InternalSpeed; } else { speedSelect = _state.ExternalSpeed; } _state.Cycle += cpuWait[speedSelect]; #ifndef DUMMYSPC _dsp->run(); #endif uint8_t timerInc = timerMultiplier[speedSelect]; _state.Timer0.Run(timerInc); _state.Timer1.Run(timerInc); _state.Timer2.Run(timerInc); } uint8_t Spc::DebugRead(uint16_t addr) { if(addr >= 0xFFC0 && _state.RomEnabled) { return _spcBios[addr & 0x3F]; } switch(addr) { case 0xF0: return 0; case 0xF1: return 0; case 0xF2: return _state.DspReg; case 0xF3: return _dsp->read(_state.DspReg & 0x7F); case 0xF4: return _state.CpuRegs[0]; case 0xF5: return _state.CpuRegs[1]; case 0xF6: return _state.CpuRegs[2]; case 0xF7: return _state.CpuRegs[3]; case 0xF8: return _state.RamReg[0]; case 0xF9: return _state.RamReg[1]; case 0xFA: return 0; case 0xFB: return 0; case 0xFC: return 0; case 0xFD: return _state.Timer0.DebugRead(); case 0xFE: return _state.Timer1.DebugRead(); case 0xFF: return _state.Timer2.DebugRead(); default: return _ram[addr]; } } void Spc::DebugWrite(uint16_t addr, uint8_t value) { _ram[addr] = value; } uint8_t Spc::Read(uint16_t addr, MemoryOperationType type) { IncCycleCount(addr); uint8_t value; if(addr >= 0xFFC0 && _state.RomEnabled) { value = _spcBios[addr & 0x3F]; } else { switch(addr) { case 0xF0: value = 0; break; case 0xF1: value = 0; break; case 0xF2: value = _state.DspReg; break; case 0xF3: #ifndef DUMMYSPC value = _dsp->read(_state.DspReg & 0x7F); #else value = 0; #endif break; case 0xF4: value = _state.CpuRegs[0]; break; case 0xF5: value = _state.CpuRegs[1]; break; case 0xF6: value = _state.CpuRegs[2]; break; case 0xF7: value = _state.CpuRegs[3]; break; case 0xF8: value = _state.RamReg[0]; break; case 0xF9: value = _state.RamReg[1]; break; case 0xFA: value = 0; break; case 0xFB: value = 0; break; case 0xFC: value = 0; break; case 0xFD: value = _state.Timer0.GetOutput(); break; case 0xFE: value = _state.Timer1.GetOutput(); break; case 0xFF: value = _state.Timer2.GetOutput(); break; default: value = _ram[addr]; break; } } #ifndef DUMMYSPC _console->ProcessMemoryRead(addr, value, type); #else LogRead(addr, value); #endif return value; } void Spc::Write(uint16_t addr, uint8_t value, MemoryOperationType type) { IncCycleCount(addr); #ifdef DUMMYSPC LogWrite(addr, value); #else //Writes always affect the underlying RAM if(_state.WriteEnabled) { _console->ProcessMemoryWrite(addr, value, type); _ram[addr] = value; } switch(addr) { case 0xF0: if(!CheckFlag(SpcFlags::DirectPage)) { _state.InternalSpeed = (value >> 6) & 0x03; _state.ExternalSpeed = (value >> 4) & 0x03; _state.TimersEnabled = (value & 0x08) != 0; _state.TimersDisabled = (value & 0x01) != 0; _state.WriteEnabled = value & 0x02; bool timersEnabled = _state.TimersEnabled && !_state.TimersDisabled; _state.Timer0.SetGlobalEnabled(timersEnabled); _state.Timer1.SetGlobalEnabled(timersEnabled); _state.Timer2.SetGlobalEnabled(timersEnabled); } break; case 0xF1: if(value & SpcControlFlags::ClearPortsA) { _state.CpuRegs[0] = _state.CpuRegs[1] = 0; } if(value & SpcControlFlags::ClearPortsB) { _state.CpuRegs[2] = _state.CpuRegs[3] = 0; } _state.Timer0.SetEnabled((value & SpcControlFlags::Timer0) != 0); _state.Timer1.SetEnabled((value & SpcControlFlags::Timer1) != 0); _state.Timer2.SetEnabled((value & SpcControlFlags::Timer2) != 0); _state.RomEnabled = (value & SpcControlFlags::EnableRom) != 0; break; case 0xF2: _state.DspReg = value; break; case 0xF3: if(_state.DspReg < 128) { _dsp->write(_state.DspReg, value); } break; case 0xF4: _state.OutputReg[0] = value; break; case 0xF5: _state.OutputReg[1] = value; break; case 0xF6: _state.OutputReg[2] = value; break; case 0xF7: _state.OutputReg[3] = value; break; case 0xF8: _state.RamReg[0] = value; break; case 0xF9: _state.RamReg[1] = value; break; case 0xFA: _state.Timer0.SetTarget(value); break; case 0xFB: _state.Timer1.SetTarget(value); break; case 0xFC: _state.Timer2.SetTarget(value); break; case 0xFD: break; case 0xFE: break; case 0xFF: break; } #endif } uint8_t Spc::CpuReadRegister(uint16_t addr) { Run(); return _state.OutputReg[addr & 0x03]; } void Spc::CpuWriteRegister(uint32_t addr, uint8_t value) { Run(); _state.CpuRegs[addr & 0x03] = value; } uint8_t Spc::DspReadRam(uint16_t addr) { uint8_t value = _ram[addr]; #ifndef DUMMYSPC _console->ProcessMemoryRead(addr, value, MemoryOperationType::Read); #endif return value; } void Spc::DspWriteRam(uint16_t addr, uint8_t value) { #ifndef DUMMYSPC _console->ProcessMemoryWrite(addr, value, MemoryOperationType::Write); #endif _ram[addr] = value; } void Spc::Run() { if(!_enabled || _state.StopState != CpuStopState::Running) { //STOP or SLEEP were executed - execution is stopped forever. return; } uint64_t targetCycle = (uint64_t)(_memoryManager->GetMasterClock() * _clockRatio); while(_state.Cycle < targetCycle) { ProcessCycle(); } } void Spc::ProcessCycle() { if(_opStep == SpcOpStep::ReadOpCode) { _opCode = GetOpCode(); _opStep = SpcOpStep::Addressing; _opSubStep = 0; } else { Exec(); } } void Spc::ProcessEndFrame() { Run(); UpdateClockRatio(); int sampleCount = _dsp->sample_count(); if(sampleCount != 0) { _console->GetSoundMixer()->PlayAudioBuffer(_soundBuffer, sampleCount / 2, Spc::SpcSampleRate); } _dsp->set_output(_soundBuffer, Spc::SampleBufferSize >> 1); } SpcState Spc::GetState() { return _state; } DspState Spc::GetDspState() { DspState state; _dsp->copyRegs(state.Regs); return state; } bool Spc::IsMuted() { return _dsp->isMuted(); } AddressInfo Spc::GetAbsoluteAddress(uint16_t addr) { if(addr < 0xFFC0 || !_state.RomEnabled) { return AddressInfo { addr, SnesMemoryType::SpcRam }; } return AddressInfo { addr & 0x3F, SnesMemoryType::SpcRom }; } int Spc::GetRelativeAddress(AddressInfo &absAddress) { if(absAddress.Type == SnesMemoryType::SpcRom) { if(_state.RomEnabled) { return 0xFFC0 | (absAddress.Address & 0x3F); } } else { if(absAddress.Address < 0xFFC0 || !_state.RomEnabled) { return absAddress.Address; } } return -1; } uint8_t* Spc::GetSpcRam() { return _ram; } uint8_t* Spc::GetSpcRom() { return _spcBios; } void Spc::Serialize(Serializer &s) { s.Stream(_state.A, _state.Cycle, _state.PC, _state.PS, _state.SP, _state.X, _state.Y); s.Stream(_state.CpuRegs[0], _state.CpuRegs[1], _state.CpuRegs[2], _state.CpuRegs[3]); s.Stream(_state.OutputReg[0], _state.OutputReg[1], _state.OutputReg[2], _state.OutputReg[3]); s.Stream(_state.RamReg[0], _state.RamReg[1]); s.Stream(_state.ExternalSpeed, _state.InternalSpeed, _state.WriteEnabled, _state.TimersEnabled); s.Stream(_state.DspReg, _state.RomEnabled, _clockRatio); _state.Timer0.Serialize(s); _state.Timer1.Serialize(s); _state.Timer2.Serialize(s); ArrayInfo ram { _ram, Spc::SpcRamSize }; s.Stream(ram); uint8_t dspState[SPC_DSP::state_size]; memset(dspState, 0, SPC_DSP::state_size); if(s.IsSaving()) { uint8_t *out = dspState; _dsp->copy_state(&out, [](uint8_t** output, void* in, size_t size) { memcpy(*output, in, size); *output += size; }); s.StreamArray(dspState, SPC_DSP::state_size); } else { s.StreamArray(dspState, SPC_DSP::state_size); UpdateClockRatio(); uint8_t *in = dspState; _dsp->copy_state(&in, [](uint8_t** input, void* output, size_t size) { memcpy(output, *input, size); *input += size; }); _dsp->set_output(_soundBuffer, Spc::SampleBufferSize >> 1); } s.Stream(_operandA, _operandB, _tmp1, _tmp2, _tmp3, _opCode, _opStep, _opSubStep, _enabled, _state.TimersDisabled); } uint8_t Spc::GetOpCode() { uint8_t value = Read(_state.PC, MemoryOperationType::ExecOpCode); _state.PC++; return value; } uint8_t Spc::ReadOperandByte() { uint8_t value = Read(_state.PC, MemoryOperationType::ExecOperand); _state.PC++; return value; } uint16_t Spc::ReadWord(uint16_t addr, MemoryOperationType type) { uint8_t lsb = Read(addr, type); uint8_t msb = Read(addr + 1, type); return (msb << 8) | lsb; } void Spc::ClearFlags(uint8_t flags) { _state.PS &= ~flags; } void Spc::SetFlags(uint8_t flags) { _state.PS |= flags; } bool Spc::CheckFlag(uint8_t flag) { return (_state.PS & flag) == flag; } void Spc::SetZeroNegativeFlags(uint8_t value) { ClearFlags(SpcFlags::Zero | SpcFlags::Negative); if(value == 0) { SetFlags(SpcFlags::Zero); } else if(value & 0x80) { SetFlags(SpcFlags::Negative); } } void Spc::SetZeroNegativeFlags16(uint16_t value) { ClearFlags(SpcFlags::Zero | SpcFlags::Negative); if(value == 0) { SetFlags(SpcFlags::Zero); } else if(value & 0x8000) { SetFlags(SpcFlags::Negative); } } uint8_t Spc::GetByteValue() { return Read(_operandA); } void Spc::Push(uint8_t value) { Write(0x100 | _state.SP, value); _state.SP--; } uint8_t Spc::Pop() { _state.SP++; return Read(0x100 | _state.SP); } uint16_t Spc::GetDirectAddress(uint8_t offset) { return (CheckFlag(SpcFlags::DirectPage) ? 0x100 : 0) + offset; } void Spc::LoadSpcFile(SpcFileData* data) { memcpy(_ram, data->SpcRam, Spc::SpcRamSize); _dsp->load(data->DspRegs); _state.PC = data->PC; _state.A = data->A; _state.X = data->X; _state.Y = data->Y; _state.PS = data->PS; _state.SP = data->SP; Write(0xF1, data->ControlReg); _state.DspReg = data->DspRegSelect; _state.CpuRegs[0] = data->CpuRegs[0]; _state.CpuRegs[1] = data->CpuRegs[1]; _state.CpuRegs[2] = data->CpuRegs[2]; _state.CpuRegs[3] = data->CpuRegs[3]; _state.RamReg[0] = data->RamRegs[0]; _state.RamReg[1] = data->RamRegs[1]; _state.Timer0.SetTarget(data->TimerTarget[0]); _state.Timer1.SetTarget(data->TimerTarget[1]); _state.Timer2.SetTarget(data->TimerTarget[2]); _state.Timer0.SetOutput(data->TimerOutput[0]); _state.Timer1.SetOutput(data->TimerOutput[0]); _state.Timer2.SetOutput(data->TimerOutput[0]); } void Spc::SetReg(SpcRegister reg, uint16_t value) { switch (reg) { case SpcRegister::SpcRegPC: { _state.PC = value; } break; case SpcRegister::SpcRegA: { _state.A = value & 0xFF; } break; case SpcRegister::SpcRegX: { _state.X = value & 0xFF; } break; case SpcRegister::SpcRegY: { _state.Y = value & 0xFF; } break; case SpcRegister::SpcRegSP: { _state.SP = value & 0xFF; } break; case SpcRegister::SpcRegPS: { _state.PS = value & 0xFF; } break; } }