#include "stdafx.h" #include "GbPpu.h" #include "GbTypes.h" #include "EventType.h" #include "Console.h" #include "Gameboy.h" #include "VideoDecoder.h" #include "RewindManager.h" #include "GbMemoryManager.h" #include "GbDmaController.h" #include "NotificationManager.h" #include "MessageManager.h" #include "../Utilities/HexUtilities.h" #include "../Utilities/Serializer.h" constexpr uint16_t bwRgbPalette[4] = { 0x7FFF, 0x6318, 0x318C, 0x0000 }; constexpr uint16_t evtColors[6] = { 0x18C6, 0x294A, 0x108C, 0x4210, 0x3084, 0x1184 }; void GbPpu::Init(Console* console, Gameboy* gameboy, GbMemoryManager* memoryManager, GbDmaController* dmaController, uint8_t* vram, uint8_t* oam) { _console = console; _gameboy = gameboy; _memoryManager = memoryManager; _dmaController = dmaController; _vram = vram; _oam = oam; _outputBuffers[0] = new uint16_t[256 * 240]; _outputBuffers[1] = new uint16_t[256 * 240]; memset(_outputBuffers[0], 0, 256 * 240 * sizeof(uint16_t)); memset(_outputBuffers[1], 0, 256 * 240 * sizeof(uint16_t)); _currentBuffer = _outputBuffers[0]; _eventViewerBuffers[0] = new uint16_t[456 * 154]; _eventViewerBuffers[1] = new uint16_t[456 * 154]; memset(_eventViewerBuffers[0], 0, 456 * 154 * sizeof(uint16_t)); memset(_eventViewerBuffers[1], 0, 456 * 154 * sizeof(uint16_t)); _currentEventViewerBuffer = _eventViewerBuffers[0]; _state = {}; _state.Cycle = -1; _state.Mode = PpuMode::HBlank; _state.CgbEnabled = _gameboy->IsCgb(); _lastFrameTime = 0; if(!_gameboy->IsCgb() || !_gameboy->UseBootRom()) { for(int i = 0; i < 4; i++) { //Init default palette for use with DMG _state.CgbBgPalettes[i] = bwRgbPalette[i]; _state.CgbObjPalettes[i] = bwRgbPalette[i]; _state.CgbObjPalettes[i+4] = bwRgbPalette[i]; } } if(!_gameboy->UseBootRom()) { Write(0xFF40, 0x91); Write(0xFF42, 0x00); Write(0xFF43, 0x00); Write(0xFF45, 0x00); Write(0xFF47, 0xFC); Write(0xFF48, 0xFF); Write(0xFF49, 0xFF); Write(0xFF4A, 0); Write(0xFF4B, 0); } } GbPpu::~GbPpu() { } GbPpuState GbPpu::GetState() { return _state; } uint16_t* GbPpu::GetEventViewerBuffer() { return _currentEventViewerBuffer; } uint16_t* GbPpu::GetPreviousEventViewerBuffer() { return _currentEventViewerBuffer == _eventViewerBuffers[0] ? _eventViewerBuffers[1] : _eventViewerBuffers[0]; } void GbPpu::Exec() { if(!_state.LcdEnabled) { //LCD is disabled, prevent IRQs, etc. //Not quite correct in terms of frame pacing if(_gameboy->GetApuCycleCount() - _lastFrameTime > 70224) { //More than a full frame's worth of time has passed since the last frame, send another blank frame _lastFrameTime = _gameboy->GetApuCycleCount(); SendFrame(); } return; } uint8_t cyclesToRun = _memoryManager->IsHighSpeed() ? 1 : 2; for(int i = 0; i < cyclesToRun; i++) { _state.Cycle++; if(_state.IdleCycles > 0) { _state.IdleCycles--; ProcessPpuCycle(); continue; } ExecCycle(); } } void GbPpu::ExecCycle() { PpuMode oldMode = _state.IrqMode; if(_state.Scanline < 144) { if(_state.Scanline == 0 && _isFirstFrame) { ProcessFirstScanlineAfterPowerOn(); } else { ProcessVisibleScanline(); } } else { ProcessVblankScanline(); } if(_state.Mode == PpuMode::Drawing) { RunDrawCycle(); if(_drawnPixels == 160) { //Mode turns to hblank on the same cycle as the last pixel is output (IRQ is on next cycle) _state.Mode = PpuMode::HBlank; if(_state.Scanline < 143) { //"This mode will transfer one block (16 bytes) during each H-Blank. No data is transferred during VBlank (LY = 143 – 153)" _dmaController->ProcessHdma(); } } } else if(_state.Mode == PpuMode::OamEvaluation) { RunSpriteEvaluation(); } bool coincidenceFlag = (_state.LyCompare == _state.LyForCompare); if(_state.IrqMode != oldMode || _state.LyCoincidenceFlag != coincidenceFlag) { _state.LyCoincidenceFlag = coincidenceFlag; UpdateStatIrq(); } ProcessPpuCycle(); } void GbPpu::ProcessVblankScanline() { switch(_state.Cycle) { case 2: if(_state.Scanline == 144) { _state.IrqMode = PpuMode::OamEvaluation; } break; case 4: if(_state.Scanline < 153) { _state.LyForCompare = _state.Scanline; if(_state.Scanline == 144) { _state.Mode = PpuMode::VBlank; _state.IrqMode = PpuMode::VBlank; _windowCounter = -1; _memoryManager->RequestIrq(GbIrqSource::VerticalBlank); SendFrame(); } } break; case 6: if(_state.Scanline == 153) { _state.Ly = 0; _state.LyForCompare = _state.Scanline; } break; case 8: if(_state.Scanline == 153) { _state.LyForCompare = -1; } break; case 12: if(_state.Scanline == 153) { _state.LyForCompare = 0; } _state.IdleCycles = 456 - 12 - 1; break; case 456: _state.Cycle = 0; _state.Scanline++; if(_state.Scanline == 154) { _state.Scanline = 0; _state.Ly = 0; _state.LyForCompare = 0; _console->ProcessEvent(EventType::StartFrame); if(_console->IsDebugging()) { _currentEventViewerBuffer = _currentEventViewerBuffer == _eventViewerBuffers[0] ? _eventViewerBuffers[1] : _eventViewerBuffers[0]; } } else { _state.Ly = _state.Scanline; _state.LyForCompare = -1; } break; } } void GbPpu::ProcessFirstScanlineAfterPowerOn() { if(_drawnPixels == 160) { //IRQ flag for Hblank is 1 cycle late compared to the mode register _state.IrqMode = PpuMode::HBlank; _drawnPixels = 0; _state.IdleCycles = 448 - _state.Cycle - 1; } switch(_state.Cycle) { case 1: _state.IrqMode = PpuMode::NoIrq; break; case 79: _latchWindowX = _state.WindowX; _latchWindowY = _state.WindowY; _latchWindowEnabled = _state.WindowEnabled; _state.Mode = PpuMode::Drawing; _state.IrqMode = PpuMode::Drawing; ResetRenderer(); _rendererIdle = true; break; case 84: _rendererIdle = false; break; case 448: _state.Cycle = 0; _state.Scanline++; _drawnPixels = 0; _state.Mode = PpuMode::HBlank; _state.IrqMode = PpuMode::HBlank; break; } } void GbPpu::ProcessVisibleScanline() { if(_drawnPixels == 160) { //IRQ flag for Hblank is 1 cycle late compared to the mode register _state.IrqMode = PpuMode::HBlank; _drawnPixels = 0; _state.IdleCycles = 456 - _state.Cycle - 1; } switch(_state.Cycle) { case 3: _state.Ly = _state.Scanline; if(_state.Scanline > 0) { //On scanlines 1-143, the OAM IRQ fires 1 cycle early _state.IrqMode = PpuMode::OamEvaluation; _state.LyForCompare = -1; } else { //On scanline 0, hblank gets set for 1 cycle here _state.Mode = PpuMode::HBlank; } break; case 4: _spriteCount = 0; _state.LyForCompare = _state.Scanline; _state.Mode = PpuMode::OamEvaluation; _state.IrqMode = PpuMode::OamEvaluation; break; case 5: //Turning on OAM IRQs in the middle of evaluation has no effect? //Or is this a patch to get the proper behavior for the STAT write bug? _state.IrqMode = PpuMode::NoIrq; break; case 84: _latchWindowX = _state.WindowX; _latchWindowY = _state.WindowY; _latchWindowEnabled = _state.WindowEnabled; _state.Mode = PpuMode::Drawing; _state.IrqMode = PpuMode::Drawing; _rendererIdle = true; ResetRenderer(); break; case 89: _rendererIdle = false; break; case 456: _state.Cycle = 0; _state.Scanline++; if(_state.Scanline == 144) { _state.Ly = 144; _state.LyForCompare = -1; } break; } } void GbPpu::ProcessPpuCycle() { if(_console->IsDebugging()) { _console->ProcessPpuCycle(_state.Scanline, _state.Cycle); if(_state.Mode <= PpuMode::OamEvaluation) { _currentEventViewerBuffer[456 * _state.Scanline + _state.Cycle] = evtColors[(int)_state.Mode]; } else if(_prevDrawnPixels != _drawnPixels && _drawnPixels > 0) { uint16_t color = _currentBuffer[_state.Scanline * 256 + (_drawnPixels - 1)]; _currentEventViewerBuffer[456 * _state.Scanline + _state.Cycle] = color; } else { _currentEventViewerBuffer[456 * _state.Scanline + _state.Cycle] = evtColors[(int)_evtColor]; } _prevDrawnPixels = _drawnPixels; } } void GbPpu::RunDrawCycle() { if(_rendererIdle) { //Idle cycles _evtColor = EvtColor::RenderingIdle; return; } bool fetchWindow = _latchWindowEnabled && _drawnPixels >= _latchWindowX - 7 && _state.Scanline >= _latchWindowY; if(_fetchWindow != fetchWindow) { //Switched between window & background, reset fetcher & pixel FIFO _fetchWindow = fetchWindow; _fetchColumn = 0; _windowCounter++; _bgFetcher.Step = 0; _bgFifo.Reset(); //Idle cycle when switching to window _evtColor = EvtColor::RenderingIdle; return; } FindNextSprite(); if(_fetchSprite >= 0 && _bgFetcher.Step >= 5 && _bgFifo.Size > 0) { _evtColor = EvtColor::RenderingOamLoad; ClockSpriteFetcher(); FindNextSprite(); return; } if(_fetchSprite == -1 && _bgFifo.Size > 0) { if(_drawnPixels >= 0) { uint16_t outOffset = _state.Scanline * 256 + _drawnPixels; GbFifoEntry entry = _bgFifo.Content[_bgFifo.Position]; GbFifoEntry sprite = _oamFifo.Content[_oamFifo.Position]; if(sprite.Color != 0 && (entry.Color == 0 || (!(sprite.Attributes & 0x80) && !(entry.Attributes & 0x80)) || (_state.CgbEnabled && !_state.BgEnabled))) { //Use sprite pixel if: // -BG color is 0, OR // -Sprite is background priority AND BG does not have its priority bit set, OR // -On CGB, the "bg enabled" flag is cleared, causing all sprites to appear above BG tiles if(_state.CgbEnabled) { _currentBuffer[outOffset] = _state.CgbObjPalettes[sprite.Color | ((sprite.Attributes & 0x07) << 2)]; } else { uint8_t colorIndex = (((sprite.Attributes & 0x10) ? _state.ObjPalette1 : _state.ObjPalette0) >> (sprite.Color * 2)) & 0x03; _currentBuffer[outOffset] = _state.CgbObjPalettes[((sprite.Attributes & 0x10) ? 4 : 0) | colorIndex]; } } else { if(_state.CgbEnabled) { _currentBuffer[outOffset] = _state.CgbBgPalettes[entry.Color | ((entry.Attributes & 0x07) << 2)]; } else { _currentBuffer[outOffset] = _state.CgbBgPalettes[(_state.BgPalette >> (entry.Color * 2)) & 0x03]; } } } _bgFifo.Pop(); _drawnPixels++; if(_oamFifo.Size > 0) { _oamFifo.Pop(); } } ClockTileFetcher(); } void GbPpu::RunSpriteEvaluation() { if(_state.Cycle & 0x01) { if(_spriteCount < 10) { uint8_t spriteIndex = ((_state.Cycle - 4) >> 1) * 4; int16_t sprY = (int16_t)_oam[spriteIndex] - 16; if(_state.Scanline >= sprY && _state.Scanline < sprY + (_state.LargeSprites ? 16 : 8)) { _spriteX[_spriteCount] = _oam[spriteIndex + 1]; _spriteIndexes[_spriteCount] = spriteIndex; _spriteCount++; } } } else { //TODO check proper timing for even&odd cycles } } void GbPpu::ResetRenderer() { //Reset fetcher & pixel FIFO _oamFifo.Reset(); _oamFetcher.Step = 0; _bgFifo.Reset(); _bgFifo.Size = 8; _bgFetcher.Step = 0; _drawnPixels = -8 - (_state.ScrollX & 0x07); _fetchSprite = -1; _fetchWindow = false; _fetchColumn = _state.ScrollX / 8; } void GbPpu::ClockSpriteFetcher() { switch(_oamFetcher.Step++) { case 1: { //Fetch tile index int16_t sprY = (int16_t)_oam[_fetchSprite] - 16; uint8_t sprTile = _oam[_fetchSprite + 2]; uint8_t sprAttr = _oam[_fetchSprite + 3]; bool vMirror = (sprAttr & 0x40) != 0; uint16_t tileBank = _state.CgbEnabled ? ((sprAttr & 0x08) ? 0x2000 : 0x0000) : 0; uint8_t sprOffsetY = vMirror ? (_state.LargeSprites ? 15 : 7) - (_state.Scanline - sprY) : (_state.Scanline - sprY); if(_state.LargeSprites) { sprTile &= 0xFE; } uint16_t sprTileAddr = (sprTile * 16 + sprOffsetY * 2) | tileBank; _oamFetcher.Addr = sprTileAddr; _oamFetcher.Attributes = sprAttr; break; } case 3: _oamFetcher.LowByte = _vram[_oamFetcher.Addr]; break; case 5: { //Fetch sprite data (high byte) _oamFetcher.HighByte = _vram[_oamFetcher.Addr + 1]; PushSpriteToPixelFifo(); break; } } } void GbPpu::FindNextSprite() { if(_fetchSprite < 0 && (_state.SpritesEnabled || _state.CgbEnabled)) { for(int i = 0; i < _spriteCount; i++) { if((int)_spriteX[i] - 8 == _drawnPixels) { _fetchSprite = _spriteIndexes[i]; _spriteX[i] = 0xFF; //Prevent processing the same sprite again _oamFetcher.Step = 0; break; } } } } void GbPpu::ClockTileFetcher() { _evtColor = EvtColor::RenderingBgLoad; switch(_bgFetcher.Step++) { case 1: { //Fetch tile index uint16_t tilemapAddr; uint8_t yOffset; if(_fetchWindow) { tilemapAddr = _state.WindowTilemapSelect ? 0x1C00 : 0x1800; yOffset = (uint8_t)_windowCounter; } else { tilemapAddr = _state.BgTilemapSelect ? 0x1C00 : 0x1800; yOffset = _state.ScrollY + _state.Scanline; } uint8_t row = yOffset >> 3; uint16_t tileAddr = tilemapAddr + _fetchColumn + row * 32; uint8_t tileIndex = _vram[tileAddr]; uint8_t attributes = _state.CgbEnabled ? _vram[tileAddr | 0x2000] : 0; bool vMirror = (attributes & 0x40) != 0; uint16_t tileBank = (attributes & 0x08) ? 0x2000 : 0x0000; uint16_t baseTile = _state.BgTileSelect ? 0 : 0x1000; uint8_t tileY = vMirror ? (7 - (yOffset & 0x07)) : (yOffset & 0x07); uint16_t tileRowAddr = baseTile + (baseTile ? (int8_t)tileIndex * 16 : tileIndex * 16) + tileY * 2; tileRowAddr |= tileBank; _bgFetcher.Addr = tileRowAddr; _bgFetcher.Attributes = (attributes & 0xBF); break; } case 3: { //Fetch tile data (low byte) _bgFetcher.LowByte = _vram[_bgFetcher.Addr]; break; } case 5: { //Fetch tile data (high byte) _bgFetcher.HighByte = _vram[_bgFetcher.Addr + 1]; //Fallthrough } case 6: case 7: if(_bgFifo.Size == 0) { PushTileToPixelFifo(); } else if(_bgFetcher.Step == 8) { //Wait until fifo is empty to push pixels _bgFetcher.Step = 7; } break; } } void GbPpu::PushSpriteToPixelFifo() { _fetchSprite = -1; _oamFetcher.Step = 0; if(!_state.SpritesEnabled) { return; } uint8_t pos = _oamFifo.Position; //Overlap sprite for(int i = 0; i < 8; i++) { uint8_t shift = (_oamFetcher.Attributes & 0x20) ? i : (7 - i); uint8_t bits = ((_oamFetcher.LowByte >> shift) & 0x01); bits |= ((_oamFetcher.HighByte >> shift) & 0x01) << 1; if(bits > 0 && _oamFifo.Content[pos].Color == 0) { _oamFifo.Content[pos].Color = bits; _oamFifo.Content[pos].Attributes = _oamFetcher.Attributes; } pos = (pos + 1) & 0x07; } _oamFifo.Size = 8; } void GbPpu::PushTileToPixelFifo() { //Add new tile to fifo for(int i = 0; i < 8; i++) { uint8_t shift = (_bgFetcher.Attributes & 0x20) ? i : (7 - i); uint8_t bits = ((_bgFetcher.LowByte >> shift) & 0x01); bits |= ((_bgFetcher.HighByte >> shift) & 0x01) << 1; _bgFifo.Content[i].Color = (_state.CgbEnabled || _state.BgEnabled) ? bits : 0; _bgFifo.Content[i].Attributes = _bgFetcher.Attributes; } _fetchColumn = (_fetchColumn + 1) & 0x1F; _bgFifo.Position = 0; _bgFifo.Size = 8; _bgFetcher.Step = 0; } void GbPpu::UpdateStatIrq() { bool irqFlag = ( _state.LcdEnabled && ((_state.LyCoincidenceFlag && (_state.Status & GbPpuStatusFlags::CoincidenceIrq)) || (_state.IrqMode == PpuMode::HBlank && (_state.Status & GbPpuStatusFlags::HBlankIrq)) || (_state.IrqMode == PpuMode::OamEvaluation && (_state.Status & GbPpuStatusFlags::OamIrq)) || (_state.IrqMode == PpuMode::VBlank && (_state.Status & GbPpuStatusFlags::VBlankIrq))) ); if(irqFlag && !_state.StatIrqFlag) { _memoryManager->RequestIrq(GbIrqSource::LcdStat); } _state.StatIrqFlag = irqFlag; } uint32_t GbPpu::GetFrameCount() { return _state.FrameCount; } bool GbPpu::IsLcdEnabled() { return _state.LcdEnabled; } PpuMode GbPpu::GetMode() { return _state.Mode; } void GbPpu::SendFrame() { _console->ProcessEvent(EventType::EndFrame); _state.FrameCount++; _console->GetNotificationManager()->SendNotification(ConsoleNotificationType::PpuFrameDone); if(_isFirstFrame) { if(!_state.CgbEnabled) { //Send blank frame on the first frame after enabling LCD (DMG only) std::fill(_currentBuffer, _currentBuffer + 256 * 239, 0x7FFF); } else { //CGB repeats the previous frame? uint16_t* src = _currentBuffer == _outputBuffers[0] ? _outputBuffers[1] : _outputBuffers[0]; std::copy(src, src + 256 * 239, _currentBuffer); } } _isFirstFrame = false; #ifdef LIBRETRO _console->GetVideoDecoder()->UpdateFrameSync(_currentBuffer, 256, 239, _state.FrameCount, false); #else if(_console->GetRewindManager()->IsRewinding()) { _console->GetVideoDecoder()->UpdateFrameSync(_currentBuffer, 256, 239, _state.FrameCount, true); } else { _console->GetVideoDecoder()->UpdateFrame(_currentBuffer, 256, 239, _state.FrameCount); } #endif //TODO move this somewhere that makes more sense uint8_t prevInput = _memoryManager->ReadInputPort(); _console->ProcessEndOfFrame(); uint8_t newInput = _memoryManager->ReadInputPort(); if(prevInput != newInput) { _memoryManager->RequestIrq(GbIrqSource::Joypad); } _currentBuffer = _currentBuffer == _outputBuffers[0] ? _outputBuffers[1] : _outputBuffers[0]; } uint8_t GbPpu::Read(uint16_t addr) { switch(addr) { case 0xFF40: return _state.Control; case 0xFF41: //FF41 - STAT - LCDC Status (R/W) return ( 0x80 | (_state.Status & 0x78) | (_state.LyCoincidenceFlag ? 0x04 : 0x00) | (int)_state.Mode ); case 0xFF42: return _state.ScrollY; //FF42 - SCY - Scroll Y (R/W) case 0xFF43: return _state.ScrollX; //FF43 - SCX - Scroll X (R/W) case 0xFF44: return _state.Ly; //FF44 - LY - LCDC Y-Coordinate (R) case 0xFF45: return _state.LyCompare; //FF45 - LYC - LY Compare (R/W) case 0xFF47: return _state.BgPalette; //FF47 - BGP - BG Palette Data (R/W) - Non CGB Mode Only case 0xFF48: return _state.ObjPalette0; //FF48 - OBP0 - Object Palette 0 Data (R/W) - Non CGB Mode Only case 0xFF49: return _state.ObjPalette1; //FF49 - OBP1 - Object Palette 1 Data (R/W) - Non CGB Mode Only case 0xFF4A: return _state.WindowY; //FF4A - WY - Window Y Position (R/W) case 0xFF4B: return _state.WindowX; //FF4B - WX - Window X Position minus 7 (R/W) } LogDebug("[Debug] GB - Missing read handler: $" + HexUtilities::ToHex(addr)); return 0xFF; } void GbPpu::Write(uint16_t addr, uint8_t value) { switch(addr) { case 0xFF40: _state.Control = value; if(_state.LcdEnabled != ((value & 0x80) != 0)) { _state.LcdEnabled = (value & 0x80) != 0; if(!_state.LcdEnabled) { //Reset LCD to top of screen when it gets turned off if(_state.Mode != PpuMode::VBlank) { _console->BreakImmediately(BreakSource::GbDisableLcdOutsideVblank); SendFrame(); } _state.Cycle = 0; _state.Scanline = 0; _state.Ly = 0; _state.LyForCompare = 0; _state.Mode = PpuMode::HBlank; _lastFrameTime = _gameboy->GetApuCycleCount(); //"If the HDMA started when the screen was on, when the screen is switched off it will copy one block after the switch." _dmaController->ProcessHdma(); } else { _isFirstFrame = true; _state.Cycle = -1; _state.IdleCycles = 0; ResetRenderer(); _state.LyCoincidenceFlag = _state.LyCompare == _state.LyForCompare; UpdateStatIrq(); _console->ProcessEvent(EventType::StartFrame); if(_console->IsDebugging()) { _currentEventViewerBuffer = _currentEventViewerBuffer == _eventViewerBuffers[0] ? _eventViewerBuffers[1] : _eventViewerBuffers[0]; for(int i = 0; i < 456 * 154; i++) { _currentEventViewerBuffer[i] = 0x18C6; } } } } _state.WindowTilemapSelect = (value & 0x40) != 0; _state.WindowEnabled = (value & 0x20) != 0; _state.BgTileSelect = (value & 0x10) != 0; _state.BgTilemapSelect = (value & 0x08) != 0; _state.LargeSprites = (value & 0x04) != 0; _state.SpritesEnabled = (value & 0x02) != 0; _state.BgEnabled = (value & 0x01) != 0; break; case 0xFF41: if(!_gameboy->IsCgb()) { //STAT write bug (DMG ONLY) //Writing to STAT causes all IRQ types to be turned on for a single cycle _state.Status = 0xF8 | (_state.Status & 0x07); UpdateStatIrq(); } _state.Status = value & 0xF8; UpdateStatIrq(); break; case 0xFF42: _state.ScrollY = value; break; case 0xFF43: _state.ScrollX = value; break; case 0xFF45: _state.LyCompare = value; if(_state.LcdEnabled) { _state.IdleCycles = 0; _state.LyCoincidenceFlag = (_state.LyCompare == _state.LyForCompare); UpdateStatIrq(); } break; case 0xFF47: _state.BgPalette = value; break; case 0xFF48: _state.ObjPalette0 = value; break; case 0xFF49: _state.ObjPalette1 = value; break; case 0xFF4A: _state.WindowY = value; break; case 0xFF4B: _state.WindowX = value; break; default: LogDebug("[Debug] GB - Missing write handler: $" + HexUtilities::ToHex(addr)); break; } } bool GbPpu::IsVramReadAllowed() { return _state.Mode <= PpuMode::VBlank || (_state.Mode == PpuMode::OamEvaluation && _state.Cycle < 80); } bool GbPpu::IsVramWriteAllowed() { return _state.Mode <= PpuMode::OamEvaluation; } uint8_t GbPpu::ReadVram(uint16_t addr) { if(IsVramReadAllowed()) { return _vram[(_state.CgbVramBank << 13) | (addr & 0x1FFF)]; } else { _console->BreakImmediately(BreakSource::GbInvalidVramAccess); return 0xFF; } } uint8_t GbPpu::PeekVram(uint8_t addr) { return IsVramReadAllowed() ? _vram[(_state.CgbVramBank << 13) | (addr & 0x1FFF)] : 0xFF; } void GbPpu::WriteVram(uint16_t addr, uint8_t value) { if(IsVramWriteAllowed()) { _vram[(_state.CgbVramBank << 13) | (addr & 0x1FFF)] = value; } else { _console->BreakImmediately(BreakSource::GbInvalidVramAccess); } } bool GbPpu::IsOamWriteAllowed() { if(_memoryManager->IsOamDmaRunning()) { return false; } if(_state.Scanline == 0 && _isFirstFrame) { return _state.Mode == PpuMode::HBlank && _state.Cycle != 77 && _state.Cycle != 78; } else { return _state.Mode <= PpuMode::VBlank || (_state.Cycle >= 80 && _state.Cycle < 84); } } bool GbPpu::IsOamReadAllowed() { if(_memoryManager->IsOamDmaRunning()) { return false; } if(_state.Scanline == 0 && _isFirstFrame) { return _state.Mode == PpuMode::HBlank; } else { return _state.Mode == PpuMode::VBlank || (_state.Mode == PpuMode::HBlank && _state.Cycle != 3); } } uint8_t GbPpu::PeekOam(uint8_t addr) { if(addr < 0xA0) { return IsOamReadAllowed() ? _oam[addr] : 0xFF; } return 0; } uint8_t GbPpu::ReadOam(uint8_t addr) { if(addr < 0xA0) { if(IsOamReadAllowed()) { return _oam[addr]; } else { _console->BreakImmediately(BreakSource::GbInvalidOamAccess); return 0xFF; } } return 0; } void GbPpu::WriteOam(uint8_t addr, uint8_t value, bool forDma) { //During DMA or rendering/oam evaluation, ignore writes to OAM //The DMA controller is always allowed to write to OAM (presumably the PPU can't read OAM during that time? TODO implement) //On the DMG, there is a 4 clock gap (80 to 83) between OAM evaluation & rendering where writing is allowed if(addr < 0xA0) { if(forDma) { _oam[addr] = value; } else if(IsOamWriteAllowed()) { _oam[addr] = value; } else { _console->BreakImmediately(BreakSource::GbInvalidOamAccess); } } } uint8_t GbPpu::ReadCgbRegister(uint16_t addr) { switch(addr) { case 0xFF4F: return _state.CgbVramBank; case 0xFF68: return _state.CgbBgPalPosition | (_state.CgbBgPalAutoInc ? 0x80 : 0); case 0xFF69: return (_state.CgbBgPalettes[_state.CgbBgPalPosition >> 1] >> ((_state.CgbBgPalPosition & 0x01) ? 8 : 0) & 0xFF); case 0xFF6A: return _state.CgbObjPalPosition | (_state.CgbObjPalAutoInc ? 0x80 : 0); case 0xFF6B: return (_state.CgbObjPalettes[_state.CgbObjPalPosition >> 1] >> ((_state.CgbObjPalPosition & 0x01) ? 8 : 0) & 0xFF); } LogDebug("[Debug] GBC - Missing read handler: $" + HexUtilities::ToHex(addr)); return 0xFF; } void GbPpu::WriteCgbRegister(uint16_t addr, uint8_t value) { switch(addr) { case 0xFF4C: _state.CgbEnabled = (value & 0x0C) == 0; break; case 0xFF4F: _state.CgbVramBank = value & 0x01; break; case 0xFF68: //FF68 - BCPS/BGPI - CGB Mode Only - Background Palette Index _state.CgbBgPalPosition = value & 0x3F; _state.CgbBgPalAutoInc = (value & 0x80) != 0; break; case 0xFF69: { //FF69 - BCPD/BGPD - CGB Mode Only - Background Palette Data WriteCgbPalette(_state.CgbBgPalPosition, _state.CgbBgPalettes, _state.CgbBgPalAutoInc, value); break; } case 0xFF6A: //FF6A - OCPS/OBPI - CGB Mode Only - Sprite Palette Index _state.CgbObjPalPosition = value & 0x3F; _state.CgbObjPalAutoInc = (value & 0x80) != 0; break; case 0xFF6B: //FF6B - OCPD/OBPD - CGB Mode Only - Sprite Palette Data WriteCgbPalette(_state.CgbObjPalPosition, _state.CgbObjPalettes, _state.CgbObjPalAutoInc, value); break; default: LogDebug("[Debug] GBC - Missing write handler: $" + HexUtilities::ToHex(addr)); break; } } void GbPpu::WriteCgbPalette(uint8_t& pos, uint16_t* pal, bool autoInc, uint8_t value) { if(_state.Mode <= PpuMode::OamEvaluation) { if(pos & 0x01) { pal[pos >> 1] = (pal[pos >> 1] & 0xFF) | ((value & 0x7F) << 8); } else { pal[pos >> 1] = (pal[pos >> 1] & 0xFF00) | value; } } if(autoInc) { pos = (pos + 1) & 0x3F; } } void GbPpu::Serialize(Serializer& s) { s.Stream( _state.Scanline, _state.Cycle, _state.Mode, _state.LyCompare, _state.BgPalette, _state.ObjPalette0, _state.ObjPalette1, _state.ScrollX, _state.ScrollY, _state.WindowX, _state.WindowY, _state.Control, _state.LcdEnabled, _state.WindowTilemapSelect, _state.WindowEnabled, _state.BgTileSelect, _state.BgTilemapSelect, _state.LargeSprites, _state.SpritesEnabled, _state.BgEnabled, _state.Status, _state.FrameCount, _lastFrameTime, _state.LyCoincidenceFlag, _state.CgbBgPalAutoInc, _state.CgbBgPalPosition, _state.CgbObjPalAutoInc, _state.CgbObjPalPosition, _state.CgbVramBank, _state.CgbEnabled, _latchWindowX, _latchWindowY, _latchWindowEnabled, _windowCounter, _isFirstFrame, _rendererIdle, _state.IdleCycles, _state.Ly, _state.LyForCompare, _state.IrqMode ); s.StreamArray(_state.CgbBgPalettes, 4 * 8); s.StreamArray(_state.CgbObjPalettes, 4 * 8); s.Stream( _bgFetcher.Attributes, _bgFetcher.Step, _bgFetcher.Addr, _bgFetcher.LowByte, _bgFetcher.HighByte, _oamFetcher.Attributes, _oamFetcher.Step, _oamFetcher.Addr, _oamFetcher.LowByte, _oamFetcher.HighByte, _drawnPixels, _fetchColumn, _fetchWindow, _fetchSprite, _spriteCount, _bgFifo.Position, _bgFifo.Size, _oamFifo.Position, _oamFifo.Size ); for(int i = 0; i < 8; i++) { s.Stream(_bgFifo.Content[i].Color, _bgFifo.Content[i].Attributes); s.Stream(_oamFifo.Content[i].Color, _oamFifo.Content[i].Attributes); } s.StreamArray(_spriteX, 10); s.StreamArray(_spriteIndexes, 10); }