#include "stdafx.h" #include "Ppu.h" #include "Console.h" #include "MemoryManager.h" #include "Cpu.h" #include "Spc.h" #include "InternalRegisters.h" #include "EmuSettings.h" #include "ControlManager.h" #include "VideoDecoder.h" #include "VideoRenderer.h" #include "NotificationManager.h" #include "DmaController.h" #include "MessageManager.h" #include "EventType.h" #include "RewindManager.h" #include "../Utilities/HexUtilities.h" #include "../Utilities/Serializer.h" static constexpr uint8_t _oamSizes[8][2][2] = { { { 1, 1 }, { 2, 2 } }, //8x8 + 16x16 { { 1, 1 }, { 4, 4 } }, //8x8 + 32x32 { { 1, 1 }, { 8, 8 } }, //8x8 + 64x64 { { 2, 2 }, { 4, 4 } }, //16x16 + 32x32 { { 2, 2 }, { 8, 8 } }, //16x16 + 64x64 { { 4, 4 }, { 8, 8 } }, //32x32 + 64x64 { { 2, 4 }, { 4, 8 } }, //16x32 + 32x64 { { 2, 4 }, { 4, 4 } } //16x32 + 32x32 }; Ppu::Ppu(shared_ptr console) { _console = console; _vram = new uint16_t[Ppu::VideoRamSize >> 1]; _console->GetSettings()->InitializeRam(_vram, Ppu::VideoRamSize); _console->GetSettings()->InitializeRam(_cgram, Ppu::CgRamSize); _console->GetSettings()->InitializeRam(_oamRam, Ppu::SpriteRamSize); _outputBuffers[0] = new uint16_t[512 * 478]; _outputBuffers[1] = new uint16_t[512 * 478]; memset(_outputBuffers[0], 0, 512 * 478 * sizeof(uint16_t)); memset(_outputBuffers[1], 0, 512 * 478 * sizeof(uint16_t)); } Ppu::~Ppu() { delete[] _vram; delete[] _outputBuffers[0]; delete[] _outputBuffers[1]; } void Ppu::PowerOn() { _skipRender = false; _regs = _console->GetInternalRegisters(); _memoryManager = _console->GetMemoryManager(); _vblankStart = _overscanMode ? 240 : 225; _currentBuffer = _outputBuffers[0]; _layerConfig[0] = {}; _layerConfig[1] = {}; _layerConfig[2] = {}; _layerConfig[3] = {}; _cgramAddress = 0; memset(_vram, 0, Ppu::VideoRamSize); memset(_oamRam, 0, Ppu::SpriteRamSize); memset(_cgram, 0, Ppu::CgRamSize); memset(_spriteIndexes, 0xFF, sizeof(_spriteIndexes)); _vramAddress = 0; _vramIncrementValue = 1; _vramAddressRemapping = 0; _vramAddrIncrementOnSecondReg = false; } void Ppu::Reset() { _scanline = 0; _forcedVblank = true; _oddFrame = 0; } uint32_t Ppu::GetFrameCount() { return _frameCount; } uint16_t Ppu::GetScanline() { return _scanline; } uint16_t Ppu::GetCycle() { //"normally dots 323 and 327 are 6 master cycles instead of 4." uint16_t hClock = _memoryManager->GetHClock(); return (hClock - ((hClock > 1292) << 1) - ((hClock > 1310) << 1)) >> 2; } uint16_t Ppu::GetVblankStart() { return _vblankStart; } PpuState Ppu::GetState() { PpuState state; state.Cycle = GetCycle(); state.Scanline = _scanline; state.HClock = _memoryManager->GetHClock(); state.FrameCount = _frameCount; state.OverscanMode = _overscanMode; state.BgMode = _bgMode; state.DirectColorMode = _directColorMode; state.Mode7 = _mode7; state.Layers[0] = _layerConfig[0]; state.Layers[1] = _layerConfig[1]; state.Layers[2] = _layerConfig[2]; state.Layers[3] = _layerConfig[3]; state.OamMode = _oamMode; state.OamBaseAddress = _oamBaseAddress; state.OamAddressOffset = _oamAddressOffset; state.EnableOamPriority = _enableOamPriority; state.ObjInterlace = _objInterlace; return state; } template void Ppu::GetTilemapData(uint8_t layerIndex, uint8_t columnIndex) { /* The current layer's options */ LayerConfig &config = _layerConfig[layerIndex]; uint16_t vScroll = config.VScroll; uint16_t hScroll = hiResMode ? (config.HScroll << 1) : config.HScroll; if(_hOffset || _vOffset) { uint16_t enableBit = layerIndex == 0 ? 0x2000 : 0x4000; if(_bgMode == 4) { if((_hOffset & 0x8000) == 0 && (_hOffset & enableBit)) { hScroll = (hScroll & 0x07) | (_hOffset & 0x3F8); } if((_hOffset & 0x8000) != 0 && (_hOffset & enableBit)) { vScroll = (_hOffset & 0x3FF); } } else { if(_hOffset & enableBit) { hScroll = (hScroll & 0x07) | (_hOffset & 0x3F8); } if(_vOffset & enableBit) { vScroll = (_vOffset & 0x3FF); } } } if(hiResMode) { hScroll >>= 1; } uint16_t scanline = _scanline; if(_mosaicEnabled & (1 << layerIndex)) { //Keep the "scanline" to what it was at the start of this mosaic block scanline -= _mosaicSize - _mosaicScanlineCounter; } /* Current scanline (in interlaced mode, switches between even and odd rows every frame */ uint16_t realY = IsDoubleHeight() ? (_oddFrame ? ((scanline << 1) + 1) : (scanline << 1)) : scanline; /* The current row of tiles (e.g scanlines 16-23 is row 2) */ uint16_t row = (realY + vScroll) >> (config.LargeTiles ? 4 : 3); /* Tilemap offset based on the current row & tilemap size options */ uint16_t addrVerticalScrollingOffset = config.DoubleHeight ? ((row & 0x20) << (config.DoubleWidth ? 6 : 5)) : 0; /* The start address for tiles on this row */ uint16_t baseOffset = config.TilemapAddress + addrVerticalScrollingOffset + ((row & 0x1F) << 5); /* The current column index (in terms of 8x8 or 16x16 tiles) */ uint16_t column = columnIndex + (hScroll >> 3); if(!hiResMode && config.LargeTiles) { //For 16x16 tiles, need to return the same tile for 2 columns 8 pixel columns in a row column >>= 1; } /* The tilemap address to read the tile data from */ uint16_t addr = baseOffset + (column & 0x1F) + (config.DoubleWidth ? (column & 0x20) << 5 : 0); _layerData[layerIndex].Tiles[columnIndex].TilemapData = _vram[addr]; _layerData[layerIndex].Tiles[columnIndex].VScroll = vScroll; _layerData[layerIndex].HasPriorityTiles |= (_vram[addr] & 0x2000) >> 13; } template void Ppu::GetChrData(uint8_t layerIndex, uint8_t column, uint8_t plane) { LayerConfig &config = _layerConfig[layerIndex]; TileData &tileData = _layerData[layerIndex].Tiles[column]; uint16_t tilemapData = tileData.TilemapData; bool largeTileWidth = hiResMode || config.LargeTiles; bool vMirror = (tilemapData & 0x8000) != 0; bool hMirror = (tilemapData & 0x4000) != 0; uint16_t scanline = _scanline; if(_mosaicEnabled && (_mosaicEnabled & (1 << layerIndex))) { //Keep the "scanline" to what it was at the start of this mosaic block scanline -= _mosaicSize - _mosaicScanlineCounter; } uint16_t realY = IsDoubleHeight() ? (_oddFrame ? ((scanline << 1) + 1) : (scanline << 1)) : scanline; bool useSecondTile = secondTile; if(!hiResMode && config.LargeTiles) { //For 16x16 tiles, need to return the 2nd part of the tile every other column useSecondTile = (((column << 3) + config.HScroll) & 0x08) == 0x08; } uint16_t tileIndex = tilemapData & 0x03FF; if(largeTileWidth) { tileIndex = ( tileIndex + (config.LargeTiles ? (((realY + tileData.VScroll) & 0x08) ? (vMirror ? 0 : 16) : (vMirror ? 16 : 0)) : 0) + (largeTileWidth ? (useSecondTile ? (hMirror ? 0 : 1) : (hMirror ? 1 : 0)) : 0) ) & 0x3FF; } uint16_t tileStart = config.ChrAddress + tileIndex * 4 * bpp; uint8_t baseYOffset = (realY + tileData.VScroll) & 0x07; uint8_t yOffset = vMirror ? (7 - baseYOffset) : baseYOffset; uint16_t pixelStart = tileStart + yOffset + (plane << 3); tileData.ChrData[plane + (secondTile ? bpp / 2 : 0)] = _vram[pixelStart]; } void Ppu::GetHorizontalOffsetByte(uint8_t columnIndex) { uint16_t columnOffset = (((columnIndex << 3) + (_layerConfig[2].HScroll & ~0x07)) >> 3) & (_layerConfig[2].DoubleWidth ? 0x3F : 0x1F); uint16_t rowOffset = (_layerConfig[2].VScroll >> 3) & (_layerConfig[2].DoubleHeight ? 0x3F : 0x1F); _hOffset = _vram[_layerConfig[2].TilemapAddress + columnOffset + (rowOffset << 5)]; } void Ppu::GetVerticalOffsetByte(uint8_t columnIndex) { uint16_t columnOffset = (((columnIndex << 3) + (_layerConfig[2].HScroll & ~0x07)) >> 3) & (_layerConfig[2].DoubleWidth ? 0x3F : 0x1F); uint16_t rowOffset = (_layerConfig[2].VScroll >> 3) & (_layerConfig[2].DoubleHeight ? 0x3F : 0x1F); uint16_t tileOffset = columnOffset + (rowOffset << 5); //The vertical offset is 0x40 bytes later - but wraps around within the tilemap based on the tilemap size (0x800 or 0x1000 bytes) uint16_t vOffsetAddr = _layerConfig[2].TilemapAddress + ((tileOffset + 0x20) & (_layerConfig[2].DoubleHeight ? 0x7FF : 0x3FF)); _vOffset = _vram[vOffsetAddr]; } void Ppu::FetchTileData() { if(_forcedVblank) { return; } if(_fetchBgStart == 0) { _hOffset = 0; _vOffset = 0; } if(_bgMode == 0) { for(int x = _fetchBgStart; x <= _fetchBgEnd; x++) { switch(x & 0x07) { case 0: GetTilemapData(3, x >> 3); break; case 1: GetTilemapData(2, x >> 3); break; case 2: GetTilemapData(1, x >> 3); break; case 3: GetTilemapData(0, x >> 3); break; case 4: GetChrData(3, x >> 3, 0); break; case 5: GetChrData(2, x >> 3, 0); break; case 6: GetChrData(1, x >> 3, 0); break; case 7: GetChrData(0, x >> 3, 0); break; } } } else if(_bgMode == 1) { for(int x = _fetchBgStart; x <= _fetchBgEnd; x++) { switch(x & 0x07) { case 0: GetTilemapData(2, x >> 3); break; case 1: GetTilemapData(1, x >> 3); break; case 2: GetTilemapData(0, x >> 3); break; case 3: GetChrData(2, x >> 3, 0); break; case 4: GetChrData(1, x >> 3, 0); break; case 5: GetChrData(1, x >> 3, 1); break; case 6: GetChrData(0, x >> 3, 0); break; case 7: GetChrData(0, x >> 3, 1); break; } } } else if(_bgMode == 2) { for(int x = _fetchBgStart; x <= _fetchBgEnd; x++) { switch(x & 0x07) { case 0: GetTilemapData(1, x >> 3); break; case 1: GetTilemapData(0, x >> 3); break; case 2: GetHorizontalOffsetByte(x >> 3); break; case 3: GetVerticalOffsetByte(x >> 3); break; case 4: GetChrData(1, x >> 3, 0); break; case 5: GetChrData(1, x >> 3, 1); break; case 6: GetChrData(0, x >> 3, 0); break; case 7: GetChrData(0, x >> 3, 1); break; } } } else if(_bgMode == 3) { for(int x = _fetchBgStart; x <= _fetchBgEnd; x++) { switch(x & 0x07) { case 0: GetTilemapData(1, x >> 3); break; case 1: GetTilemapData(0, x >> 3); break; case 2: GetChrData(1, x >> 3, 0); break; case 3: GetChrData(1, x >> 3, 1); break; case 4: GetChrData(0, x >> 3, 0); break; case 5: GetChrData(0, x >> 3, 1); break; case 6: GetChrData(0, x >> 3, 2); break; case 7: GetChrData(0, x >> 3, 3); break; } } } else if(_bgMode == 4) { for(int x = _fetchBgStart; x <= _fetchBgEnd; x++) { switch(x & 0x07) { case 0: GetTilemapData(1, x >> 3); break; case 1: GetTilemapData(0, x >> 3); break; case 2: GetHorizontalOffsetByte(x >> 3); break; case 3: GetChrData(1, x >> 3, 0); break; case 4: GetChrData(0, x >> 3, 0); break; case 5: GetChrData(0, x >> 3, 1); break; case 6: GetChrData(0, x >> 3, 2); break; case 7: GetChrData(0, x >> 3, 3); break; } } } else if(_bgMode == 5) { for(int x = _fetchBgStart; x <= _fetchBgEnd; x++) { switch(x & 0x07) { case 0: GetTilemapData(1, x >> 3); break; case 1: GetTilemapData(0, x >> 3); break; case 2: GetChrData(1, x >> 3, 0); break; case 3: GetChrData(1, x >> 3, 0); break; case 4: GetChrData(0, x >> 3, 0); break; case 5: GetChrData(0, x >> 3, 1); break; case 6: GetChrData(0, x >> 3, 0); break; case 7: GetChrData(0, x >> 3, 1); break; } } } else if(_bgMode == 6) { for(int x = _fetchBgStart; x <= _fetchBgEnd; x++) { switch(x & 0x07) { case 0: GetTilemapData(1, x >> 3); break; case 1: GetTilemapData(0, x >> 3); break; case 2: GetHorizontalOffsetByte(x >> 3); break; case 3: GetVerticalOffsetByte(x >> 3); break; case 4: GetChrData(0, x >> 3, 0); break; case 5: GetChrData(0, x >> 3, 1); break; case 6: GetChrData(0, x >> 3, 0); break; case 7: GetChrData(0, x >> 3, 1); break; } } } } bool Ppu::ProcessEndOfScanline(uint16_t hClock) { if(hClock >= 1364 || (hClock == 1360 && _scanline == 240 && _oddFrame && !_screenInterlace)) { //"In non-interlace mode scanline 240 of every other frame (those with $213f.7=1) is only 1360 cycles." if(_scanline < _vblankStart) { RenderScanline(); } _scanline++; if(_mosaicScanlineCounter) { _mosaicScanlineCounter--; if(_mosaicEnabled && !_mosaicScanlineCounter) { _mosaicScanlineCounter = _mosaicSize; } } _drawStartX = 0; _drawEndX = 0; _fetchBgStart = 0; _fetchBgEnd = 0; _fetchSpriteStart = 0; _fetchSpriteEnd = 0; _spriteEvalStart = 0; _spriteEvalEnd = 0; _spriteFetchingDone = false; for(int i = 0; i < 4; i++) { _layerData[i].HasPriorityTiles = false; } memcpy(_spritePriority, _spritePriorityCopy, sizeof(_spritePriority)); memcpy(_spritePalette, _spritePaletteCopy, sizeof(_spritePalette)); memcpy(_spriteColors, _spriteColorsCopy, sizeof(_spriteColors)); memset(_spriteIndexes, 0xFF, sizeof(_spriteIndexes)); _pixelsDrawn = 0; _subPixelsDrawn = 0; memset(_rowPixelFlags, 0, sizeof(_rowPixelFlags)); memset(_subScreenFilled, 0, sizeof(_subScreenFilled)); if(_scanline == _vblankStart) { //Reset OAM address at the start of vblank? if(!_forcedVblank) { //TODO, the timing of this may be slightly off? should happen at H=10 based on anomie's docs _internalOamAddress = (_oamRamAddress << 1); } VideoConfig cfg = _console->GetSettings()->GetVideoConfig(); _configVisibleLayers = (cfg.HideBgLayer0 ? 0 : 1) | (cfg.HideBgLayer1 ? 0 : 2) | (cfg.HideBgLayer2 ? 0 : 4) | (cfg.HideBgLayer3 ? 0 : 8) | (cfg.HideSprites ? 0 : 16); _console->ProcessEvent(EventType::EndFrame); _frameCount++; _console->GetSpc()->ProcessEndFrame(); _regs->SetNmiFlag(true); SendFrame(); if(_regs->IsNmiEnabled()) { _console->GetCpu()->SetNmiFlag(); } } else if(_scanline >= GetLastScanline() + 1) { //"Frames are 262 scanlines in non-interlace mode, while in interlace mode frames with $213f.7=0 are 263 scanlines" _oddFrame ^= 1; _regs->SetNmiFlag(false); _scanline = 0; _rangeOver = false; _timeOver = false; _console->ProcessEvent(EventType::StartFrame); _skipRender = !_console->GetVideoRenderer()->IsRecording() && (_console->GetSettings()->GetEmulationSpeed() == 0 || _console->GetSettings()->GetEmulationSpeed() > 150) && _frameSkipTimer.GetElapsedMS() < 10; if(!_skipRender) { //If we're not skipping this frame, reset the high resolution flag _useHighResOutput = false; } _mosaicScanlineCounter = _mosaicEnabled ? _mosaicSize + 1 : 0; } return true; } return false; } uint16_t Ppu::GetLastScanline() { if(_console->GetRegion() == ConsoleRegion::Ntsc) { if(!_screenInterlace || _oddFrame) { return 261; } else { return 262; } } else { if(!_screenInterlace || _oddFrame) { return 311; } else { return 312; } } } void Ppu::EvaluateNextLineSprites() { if(_spriteEvalStart == 0) { _spriteCount = 0; _oamEvaluationIndex = _enableOamPriority ? ((_internalOamAddress & 0x1FC) >> 2) : 0; } if(_forcedVblank) { return; } for(int i = _spriteEvalStart; i <= _spriteEvalEnd; i++) { if(!(i & 0x01)) { //First cycle, read X & Y and high oam byte FetchSpritePosition(_oamEvaluationIndex << 2); } else { //Second cycle: Check if sprite is in range, if so, keep its index if(_currentSprite.IsVisible(_scanline)) { if(_spriteCount < 32) { _spriteIndexes[_spriteCount] = _oamEvaluationIndex; _spriteCount++; } else { _rangeOver = true; } } _oamEvaluationIndex = (_oamEvaluationIndex + 1) & 0x7F; } } } void Ppu::FetchSpriteData() { //From H=272 to 339, fetch a single word of CHR data on every cycle (for up to 34 sprites) if(_fetchSpriteStart == 0) { memset(_spritePriorityCopy, 0xFF, sizeof(_spritePriorityCopy)); _spriteTileCount = 0; _currentSprite.Index = 0xFF; if(_spriteCount == 0) { _spriteFetchingDone = true; return; } _oamTimeIndex = _spriteIndexes[_spriteCount - 1]; } for(int x = _fetchSpriteStart; x <= _fetchSpriteEnd; x++) { if(x >= 2) { //Fetch the tile using the OAM data loaded on the past 2 cycles, before overwriting it in FetchSpriteAttributes below if(!_forcedVblank) { FetchSpriteTile(x & 0x01); } if((x & 1) && _spriteCount == 0 && _currentSprite.ColumnOffset == 0) { //End this step _spriteFetchingDone = true; break; } } if(_spriteCount > 0) { if(x & 1) { FetchSpriteAttributes((_oamTimeIndex << 2) | 0x02); if(_spriteCount > 0) { _oamTimeIndex = _spriteIndexes[_spriteCount - 1]; } } else { FetchSpritePosition(_oamTimeIndex << 2); } } } } void Ppu::FetchSpritePosition(uint16_t oamAddress) { uint8_t highTableOffset = oamAddress >> 4; uint8_t shift = ((oamAddress >> 1) & 0x06); uint8_t highTableValue = _oamRam[0x200 | highTableOffset] >> shift; uint8_t largeSprite = (highTableValue & 0x02) >> 1; uint16_t oamValue = _oamRam[oamAddress] | (_oamRam[oamAddress + 1] << 8); uint16_t sign = (highTableValue & 0x01) << 8; uint8_t spriteIndex = oamAddress >> 2; if(spriteIndex != _currentSprite.Index) { _currentSprite.Index = oamAddress >> 2; _currentSprite.ColumnOffset = -1; } _currentSprite.X = (int16_t)((sign | (oamValue & 0xFF)) << 7) >> 7; _currentSprite.Y = (oamValue >> 8); _currentSprite.Width = _oamSizes[_oamMode][largeSprite][0] << 3; uint8_t height = _oamSizes[_oamMode][largeSprite][1] << 3; if(_objInterlace) { height /= 2; } _currentSprite.Height = height; } void Ppu::FetchSpriteAttributes(uint16_t oamAddress) { _spriteTileCount++; if(_spriteTileCount > 34) { _timeOver = true; } uint8_t flags = _oamRam[oamAddress + 1]; bool useSecondTable = (flags & 0x01) != 0; _currentSprite.Palette = (flags >> 1) & 0x07; _currentSprite.Priority = (flags >> 4) & 0x03; _currentSprite.HorizontalMirror = (flags & 0x40) != 0; uint8_t columnCount = (_currentSprite.Width / 8); if(_currentSprite.ColumnOffset == -1) { _currentSprite.ColumnOffset = columnCount - 1; } else { _currentSprite.ColumnOffset--; } if(_currentSprite.ColumnOffset == 0) { _spriteCount--; } _currentSprite.DrawX = _currentSprite.X + ((columnCount - _currentSprite.ColumnOffset - 1) << 3); uint8_t yOffset; int rowOffset; int yGap = (_scanline - _currentSprite.Y); if(_objInterlace) { yGap <<= 1; yGap |= _oddFrame; } bool verticalMirror = (flags & 0x80) != 0; if(verticalMirror) { yOffset = (_currentSprite.Height - 1 - yGap) & 0x07; rowOffset = (_currentSprite.Height - 1 - yGap) >> 3; } else { yOffset = yGap & 0x07; rowOffset = yGap >> 3; } uint8_t tileRow = (_oamRam[oamAddress] & 0xF0) >> 4; uint8_t tileColumn = _oamRam[oamAddress] & 0x0F; uint8_t row = (tileRow + rowOffset) & 0x0F; uint8_t columnOffset = _currentSprite.HorizontalMirror ? _currentSprite.ColumnOffset : (columnCount - _currentSprite.ColumnOffset - 1); uint8_t tileIndex = (row << 4) | ((tileColumn + columnOffset) & 0x0F); uint16_t tileStart = (_oamBaseAddress + (tileIndex << 4) + (useSecondTable ? _oamAddressOffset : 0)) & 0x7FFF; _currentSprite.FetchAddress = tileStart + yOffset; } void Ppu::FetchSpriteTile(bool secondCycle) { //The timing for the fetches should be (mostly) accurate (H=272 to 339) uint16_t chrData = _vram[_currentSprite.FetchAddress]; _currentSprite.ChrData[secondCycle] = chrData; if(!secondCycle) { _currentSprite.FetchAddress += 8; } else { int16_t xPos = _currentSprite.DrawX; for(int x = 0; x < 8; x++) { if(xPos + x < 0 || xPos + x > 255) { continue; } uint8_t xOffset = _currentSprite.HorizontalMirror ? ((7 - x) & 0x07) : x; uint8_t color = GetTilePixelColor<4>(_currentSprite.ChrData, 7 - xOffset); if(color != 0) { _spriteColorsCopy[xPos + x] = color; _spritePriorityCopy[xPos + x] = _currentSprite.Priority; _spritePaletteCopy[xPos + x] = _currentSprite.Palette; } } } //Dummy fetches to VRAM when no sprite to load? //This might be observable by reading from VMDATAxREAD? } template void Ppu::RenderMode0() { RenderSprites<3, forMainScreen>(); RenderTilemap<0, 2, true, forMainScreen>(); RenderTilemap<1, 2, true, forMainScreen, 32>(); RenderSprites<2, forMainScreen>(); RenderTilemap<0, 2, false, forMainScreen>(); RenderTilemap<1, 2, false, forMainScreen, 32>(); RenderSprites<1, forMainScreen>(); RenderTilemap<2, 2, true, forMainScreen, 64>(); RenderTilemap<3, 2, true, forMainScreen, 96>(); RenderSprites<0, forMainScreen>(); RenderTilemap<2, 2, false, forMainScreen, 64>(); RenderTilemap<3, 2, false, forMainScreen, 96>(); RenderBgColor(); } template void Ppu::RenderMode1() { if(_mode1Bg3Priority) { RenderTilemap<2, 2, true, forMainScreen>(); } RenderSprites<3, forMainScreen>(); RenderTilemap<0, 4, true, forMainScreen>(); RenderTilemap<1, 4, true, forMainScreen>(); RenderSprites<2, forMainScreen>(); RenderTilemap<0, 4, false, forMainScreen>(); RenderTilemap<1, 4, false, forMainScreen>(); RenderSprites<1, forMainScreen>(); if(!_mode1Bg3Priority) { RenderTilemap<2, 2, true, forMainScreen>(); } RenderSprites<0, forMainScreen>(); RenderTilemap<2, 2, false, forMainScreen>(); RenderBgColor(); } template void Ppu::RenderMode2() { RenderSprites<3, forMainScreen>(); RenderTilemap<0, 4, true, forMainScreen>(); RenderSprites<2, forMainScreen>(); RenderTilemap<1, 4, true, forMainScreen>(); RenderSprites<1, forMainScreen>(); RenderTilemap<0, 4, false, forMainScreen>(); RenderSprites<0, forMainScreen>(); RenderTilemap<1, 4, false, forMainScreen>(); RenderBgColor(); } template void Ppu::RenderMode3() { RenderSprites<3, forMainScreen>(); RenderTilemap<0, 8, true, forMainScreen>(); RenderSprites<2, forMainScreen>(); RenderTilemap<1, 4, true, forMainScreen>(); RenderSprites<1, forMainScreen>(); RenderTilemap<0, 8, false, forMainScreen>(); RenderSprites<0, forMainScreen>(); RenderTilemap<1, 4, false, forMainScreen>(); RenderBgColor(); } template void Ppu::RenderMode4() { RenderSprites<3, forMainScreen>(); RenderTilemap<0, 8, true, forMainScreen>(); RenderSprites<2, forMainScreen>(); RenderTilemap<1, 2, true, forMainScreen>(); RenderSprites<1, forMainScreen>(); RenderTilemap<0, 8, false, forMainScreen>(); RenderSprites<0, forMainScreen>(); RenderTilemap<1, 2, false, forMainScreen>(); RenderBgColor(); } template void Ppu::RenderMode5() { RenderSprites<3, forMainScreen>(); RenderTilemap<0, 4, true, forMainScreen>(); RenderSprites<2, forMainScreen>(); RenderTilemap<1, 2, true, forMainScreen>(); RenderSprites<1, forMainScreen>(); RenderTilemap<0, 4, false, forMainScreen>(); RenderSprites<0, forMainScreen>(); RenderTilemap<1, 2, false, forMainScreen>(); RenderBgColor(); } template void Ppu::RenderMode6() { RenderSprites<3, forMainScreen>(); RenderTilemap<0, 4, true, forMainScreen>(); RenderSprites<2, forMainScreen>(); RenderSprites<1, forMainScreen>(); RenderTilemap<0, 4, false, forMainScreen>(); RenderSprites<0, forMainScreen>(); RenderBgColor(); } template void Ppu::RenderMode7() { RenderSprites<3, forMainScreen>(); RenderSprites<2, forMainScreen>(); if(_mode7.ExtBgEnabled) { RenderTilemapMode7<1, forMainScreen, true>(); } RenderSprites<1, forMainScreen>(); RenderTilemapMode7<0, forMainScreen, false>(); RenderSprites<0, forMainScreen>(); if(_mode7.ExtBgEnabled) { RenderTilemapMode7<1, forMainScreen, false>(); } RenderBgColor(); } void Ppu::RenderScanline() { int32_t hPos = GetCycle(); if(hPos <= 255 || _spriteEvalEnd < 255) { _spriteEvalEnd = std::min(hPos, 255); if(_spriteEvalStart <= _spriteEvalEnd) { EvaluateNextLineSprites(); } _spriteEvalStart = _spriteEvalEnd + 1; } if(!_skipRender && (hPos <= 263 || _fetchBgEnd < 263)) { //Fetch tilemap and tile CHR data, as needed, between H=0 and H=263 _fetchBgEnd = std::min(hPos, 263); if(_fetchBgStart <= _fetchBgEnd) { FetchTileData(); } _fetchBgStart = _fetchBgEnd + 1; } //Render the scanline if(!_skipRender && _drawStartX < 255 && hPos > 22 && _scanline > 0) { _drawEndX = std::min(hPos - 22, 255); uint8_t bgMode = _bgMode; if(_forcedVblank) { bgMode = 8; } switch(bgMode) { case 0: RenderMode0(); RenderMode0(); break; case 1: RenderMode1(); RenderMode1(); break; case 2: RenderMode2(); RenderMode2(); break; case 3: RenderMode3(); RenderMode3(); break; case 4: RenderMode4(); RenderMode4(); break; case 5: RenderMode5(); RenderMode5(); break; case 6: RenderMode6(); RenderMode6(); break; case 7: RenderMode7(); RenderMode7(); break; case 8: //Forced blank, output black memset(_mainScreenBuffer + _drawStartX, 0, (_drawEndX - _drawStartX + 1) * 2); memset(_subScreenBuffer + _drawStartX, 0, (_drawEndX - _drawStartX + 1) * 2); break; } ApplyColorMath(); ApplyBrightness(); ApplyHiResMode(); _drawStartX = _drawEndX + 1; } if(hPos >= 270 && !_spriteFetchingDone) { //Fetch sprite data from OAM and calculated which CHR data needs to be loaded (between H=270 and H=337) //Fetch sprite CHR data, as needed, between H=272 and H=339 _fetchSpriteEnd = std::min(hPos - 270, 69); if(_fetchSpriteStart <= _fetchSpriteEnd) { FetchSpriteData(); } _fetchSpriteStart = _fetchSpriteEnd + 1; } } template void Ppu::RenderBgColor() { if((forMainScreen && _pixelsDrawn == 256) || (!forMainScreen && _subPixelsDrawn == 256)) { return; } for(int x = _drawStartX; x <= _drawEndX; x++) { if(forMainScreen) { if(!_rowPixelFlags[x]) { uint8_t pixelFlags = PixelFlags::Filled | ((_colorMathEnabled & 0x20) ? PixelFlags::AllowColorMath : 0); _mainScreenBuffer[x] = _cgram[0]; _rowPixelFlags[x] = pixelFlags; } } else { if(!_subScreenFilled[x]) { _subScreenBuffer[x] = _cgram[0]; } } } } template void Ppu::RenderSprites() { if(!IsRenderRequired(Ppu::SpriteLayerIndex)) { return; } uint8_t activeWindowCount = 0; if(forMainScreen) { if(_windowMaskMain[Ppu::SpriteLayerIndex]) { activeWindowCount = (uint8_t)_window[0].ActiveLayers[Ppu::SpriteLayerIndex] + (uint8_t)_window[1].ActiveLayers[Ppu::SpriteLayerIndex]; } } else { if(_windowMaskSub[Ppu::SpriteLayerIndex]) { activeWindowCount = (uint8_t)_window[0].ActiveLayers[Ppu::SpriteLayerIndex] + (uint8_t)_window[1].ActiveLayers[Ppu::SpriteLayerIndex]; } } if(forMainScreen) { for(int x = _drawStartX; x <= _drawEndX; x++) { if(!_rowPixelFlags[x] && _spritePriority[x] == priority) { if(activeWindowCount && ProcessMaskWindow(activeWindowCount, x)) { //This pixel was masked continue; } uint16_t paletteRamOffset = 128 + (_spritePalette[x] << 4) + _spriteColors[x]; _mainScreenBuffer[x] = _cgram[paletteRamOffset]; _rowPixelFlags[x] |= PixelFlags::Filled | (((_colorMathEnabled & 0x10) && _spritePalette[x] > 3) ? PixelFlags::AllowColorMath : 0); } } } else { for(int x = _drawStartX; x <= _drawEndX; x++) { if(!_subScreenFilled[x] && _spritePriority[x] == priority) { if(activeWindowCount && ProcessMaskWindow(activeWindowCount, x)) { //This pixel was masked continue; } uint16_t paletteRamOffset = 128 + (_spritePalette[x] << 4) + _spriteColors[x]; _subScreenBuffer[x] = _cgram[paletteRamOffset]; _subScreenFilled[x] = true; } } } } template void Ppu::RenderTilemap() { /* The current layer's options */ uint16_t hScrollOriginal = _layerConfig[layerIndex].HScroll; uint16_t hScroll = hiResMode ? (hScrollOriginal << 1) : hScrollOriginal; TileData* tileData = _layerData[layerIndex].Tiles; /* The current pixel x position (normally 0-255, but 0-511 in hi-res mode - even on subscreen, odd on main screen) */ uint8_t mosaicCounter = applyMosaic ? _mosaicSize - (_drawStartX % _mosaicSize) : 0; uint8_t lookupIndex; uint8_t chrDataOffset; for(int x = _drawStartX; x <= _drawEndX; x++) { if(hiResMode) { lookupIndex = (x + (hScrollOriginal & 0x07)) >> 2; chrDataOffset = lookupIndex & 0x01; lookupIndex >>= 1; } else { lookupIndex = (x + (hScrollOriginal & 0x07)) >> 3; chrDataOffset = 0; } uint16_t tilemapData = tileData[lookupIndex].TilemapData; if((uint8_t)processHighPriority != ((tilemapData & 0x2000) >> 13)) { continue; } uint16_t* chrData = tileData[lookupIndex].ChrData; bool hMirror = (tilemapData & 0x4000) != 0; uint8_t xOffset; if(hiResMode) { xOffset = ((x << 1) + forMainScreen + hScroll) & 0x07; } else { xOffset = (x + hScroll) & 0x07; } uint8_t shift = hMirror ? xOffset : (7 - xOffset); uint8_t color = GetTilePixelColor(chrData + (chrDataOffset ? bpp / 2 : 0), shift); uint16_t paletteColor; if(bpp == 8 && directColorMode) { uint8_t palette = (tilemapData >> 10) & 0x07; paletteColor = ( ((((color & 0x07) << 1) | (palette & 0x01)) << 1) | (((color & 0x38) | ((palette & 0x02) << 1)) << 4) | (((color & 0xC0) | ((palette & 0x04) << 3)) << 7) ); } else { /* Ignore palette bits for 256-color layers */ uint8_t palette = bpp == 8 ? 0 : (tilemapData >> 10) & 0x07; paletteColor = _cgram[basePaletteOffset + palette * (1 << bpp) + color]; } if(applyMosaic) { if(mosaicCounter == _mosaicSize) { mosaicCounter = 1; _mosaicColor[layerIndex] = (paletteColor << 8) | color; } else { mosaicCounter++; color = _mosaicColor[layerIndex] & 0xFF; paletteColor = _mosaicColor[layerIndex] >> 8; } } if(color > 0 && (!activeWindowCount || !ProcessMaskWindow(activeWindowCount, x))) { if(forMainScreen) { if(!_rowPixelFlags[x]) { /* Keeps track of whether or not the pixel is allowed to participate in color math */ uint8_t pixelFlags = PixelFlags::Filled | (((_colorMathEnabled >> layerIndex) & 0x01) ? PixelFlags::AllowColorMath : 0); DrawMainPixel(x, paletteColor, pixelFlags); } } else { if(!_subScreenFilled[x]) { DrawSubPixel(x, paletteColor); } } } } } template bool Ppu::IsRenderRequired(uint8_t layerIndex) { if(forMainScreen) { if(_pixelsDrawn == 256 || (((_mainScreenLayers & _configVisibleLayers) >> layerIndex) & 0x01) == 0) { //This screen is disabled, or we've drawn all pixels already return false; } } else { if(_subPixelsDrawn == 256 || (((_subScreenLayers & _configVisibleLayers) >> layerIndex) & 0x01) == 0) { //This screen is disabled, or we've drawn all pixels already return false; } } return true; } template uint8_t Ppu::GetTilePixelColor(const uint16_t chrData[4], const uint8_t shift) { uint8_t color; if(bpp == 2) { color = (chrData[0] >> shift) & 0x01; color |= (chrData[0] >> (7 + shift)) & 0x02; } else if(bpp == 4) { color = (chrData[0] >> shift) & 0x01; color |= (chrData[0] >> (7 + shift)) & 0x02; color |= ((chrData[1] >> shift) & 0x01) << 2; color |= ((chrData[1] >> (7 + shift)) & 0x02) << 2; } else if(bpp == 8) { color = (chrData[0] >> shift) & 0x01; color |= (chrData[0] >> (7 + shift)) & 0x02; color |= ((chrData[1] >> shift) & 0x01) << 2; color |= ((chrData[1] >> (7 + shift)) & 0x02) << 2; color |= ((chrData[2] >> shift) & 0x01) << 4; color |= ((chrData[2] >> (7 + shift)) & 0x02) << 4; color |= ((chrData[3] >> shift) & 0x01) << 6; color |= ((chrData[3] >> (7 + shift)) & 0x02) << 6; } else { throw std::runtime_error("unsupported bpp"); } return color; } template void Ppu::RenderTilemapMode7() { if(!IsRenderRequired(layerIndex)) { return; } auto clip = [](int32_t val) { return (val & 0x2000) ? (val | ~0x3ff) : (val & 0x3ff); }; if(_drawStartX == 0) { //Keep the same scroll offsets for the entire scanline _mode7.HScrollLatch = _mode7.HScroll; _mode7.VScrollLatch = _mode7.VScroll; } int32_t lutX[256]; int32_t lutY[256]; int32_t hScroll = ((int32_t)_mode7.HScrollLatch << 19) >> 19; int32_t vScroll = ((int32_t)_mode7.VScrollLatch << 19) >> 19; int32_t centerX = ((int32_t)_mode7.CenterX << 19) >> 19; int32_t centerY = ((int32_t)_mode7.CenterY << 19) >> 19; uint16_t realY = _mode7.VerticalMirroring ? (255 - (_scanline + 1)) : (_scanline + 1); lutX[0] = ( ((_mode7.Matrix[0] * clip(hScroll - centerX)) & ~63) + ((_mode7.Matrix[1] * realY) & ~63) + ((_mode7.Matrix[1] * clip(vScroll - centerY)) & ~63) + (centerX << 8) ); lutY[0] = ( ((_mode7.Matrix[2] * clip(hScroll - centerX)) & ~63) + ((_mode7.Matrix[3] * realY) & ~63) + ((_mode7.Matrix[3] * clip(vScroll - centerY)) & ~63) + (centerY << 8) ); for(int x = 1; x < 256; x++) { lutX[x] = lutX[x - 1] + _mode7.Matrix[0]; lutY[x] = lutY[x - 1] + _mode7.Matrix[2]; } uint8_t activeWindowCount = 0; if((forMainScreen && _windowMaskMain[layerIndex]) || (!forMainScreen && _windowMaskSub[layerIndex])) { activeWindowCount = (uint8_t)_window[0].ActiveLayers[layerIndex] + (uint8_t)_window[1].ActiveLayers[layerIndex]; } uint8_t pixelFlags = PixelFlags::Filled | (((_colorMathEnabled >> layerIndex) & 0x01) ? PixelFlags::AllowColorMath : 0); for(int x = _drawStartX; x <= _drawEndX; x++) { uint16_t realX = _mode7.HorizontalMirroring ? (255 - x) : x; if(forMainScreen) { if(_rowPixelFlags[x]) { continue; } } else { if(_subScreenFilled[x]) { continue; } } if(activeWindowCount && ProcessMaskWindow(activeWindowCount, x)) { //This pixel was masked, skip it continue; } int32_t xOffset = (lutX[realX] >> 8); int32_t yOffset = (lutY[realX] >> 8); uint8_t tileIndex; if(!_mode7.LargeMap) { yOffset &= 0x3FF; xOffset &= 0x3FF; tileIndex = (uint8_t)_vram[((yOffset & ~0x07) << 4) | (xOffset >> 3)]; } else { if(yOffset < 0 || yOffset > 0x3FF || xOffset < 0 || xOffset > 0x3FF) { if(_mode7.FillWithTile0) { tileIndex = 0; } else { //Draw nothing for this pixel, we're outside the map continue; } } else { tileIndex = (uint8_t)_vram[((yOffset & ~0x07) << 4) | (xOffset >> 3)]; } } uint16_t colorIndex; if(layerIndex == 1) { uint8_t color = _vram[((tileIndex << 6) + ((yOffset & 0x07) << 3) + (xOffset & 0x07))] >> 8; if(((uint8_t)processHighPriority << 7) != (color & 0x80)) { //Wrong priority, skip this pixel continue; } colorIndex = (color & 0x7F); } else { colorIndex = _vram[((tileIndex << 6) + ((yOffset & 0x07) << 3) + (xOffset & 0x07))] >> 8; } if(colorIndex > 0) { uint16_t paletteColor; if(directColorMode) { paletteColor = ((colorIndex & 0x07) << 2) | ((colorIndex & 0x38) << 4) | ((colorIndex & 0xC0) << 7); } else { paletteColor = _cgram[colorIndex]; } if(forMainScreen) { DrawMainPixel(x, paletteColor, pixelFlags); } else { DrawSubPixel(x, paletteColor); } } } } void Ppu::DrawMainPixel(uint8_t x, uint16_t color, uint8_t flags) { _mainScreenBuffer[x] = color; _rowPixelFlags[x] = flags; _pixelsDrawn++; } void Ppu::DrawSubPixel(uint8_t x, uint16_t color) { _subScreenBuffer[x] = color; _subScreenFilled[x] = true; _subPixelsDrawn++; } void Ppu::ApplyColorMath() { uint8_t activeWindowCount = (uint8_t)_window[0].ActiveLayers[Ppu::ColorWindowIndex] + (uint8_t)_window[1].ActiveLayers[Ppu::ColorWindowIndex]; bool hiResMode = _hiResMode || _bgMode == 5 || _bgMode == 6; uint16_t prevMainPixel = 0; int prevX = _drawStartX > 0 ? _drawStartX - 1 : 0; for(int x = _drawStartX; x <= _drawEndX; x++) { bool isInsideWindow = activeWindowCount && ProcessMaskWindow(activeWindowCount, x); uint16_t subPixel = _subScreenBuffer[x]; if(hiResMode) { //Apply the color math based on the previous main pixel ApplyColorMathToPixel(_subScreenBuffer[x], prevMainPixel, prevX, isInsideWindow); prevMainPixel = _mainScreenBuffer[x]; prevX = x; } ApplyColorMathToPixel(_mainScreenBuffer[x], subPixel, x, isInsideWindow); } } void Ppu::ApplyColorMathToPixel(uint16_t &pixelA, uint16_t pixelB, int x, bool isInsideWindow) { uint8_t halfShift = _colorMathHalveResult ? 1 : 0; //Set color to black as needed based on clip mode switch(_colorMathClipMode) { default: case ColorWindowMode::Never: break; case ColorWindowMode::OutsideWindow: if(!isInsideWindow) { pixelA = 0; halfShift = 0; } break; case ColorWindowMode::InsideWindow: if(isInsideWindow) { pixelA = 0; halfShift = 0; } break; case ColorWindowMode::Always: pixelA = 0; break; } if(!(_rowPixelFlags[x] & PixelFlags::AllowColorMath)) { //Color math doesn't apply to this pixel return; } //Prevent color math as needed based on mode switch(_colorMathPreventMode) { default: case ColorWindowMode::Never: break; case ColorWindowMode::OutsideWindow: if(!isInsideWindow) { return; } break; case ColorWindowMode::InsideWindow: if(isInsideWindow) { return; } break; case ColorWindowMode::Always: return; } uint16_t otherPixel; if(_colorMathAddSubscreen) { if(_subScreenFilled[x]) { otherPixel = pixelB; } else { //there's nothing in the subscreen at this pixel, use the fixed color and disable halve operation otherPixel = _fixedColor; halfShift = 0; } } else { otherPixel = _fixedColor; } if(_colorMathSubstractMode) { uint16_t r = std::max((pixelA & 0x001F) - (otherPixel & 0x001F), 0) >> halfShift; uint16_t g = std::max(((pixelA >> 5) & 0x001F) - ((otherPixel >> 5) & 0x001F), 0) >> halfShift; uint16_t b = std::max(((pixelA >> 10) & 0x001F) - ((otherPixel >> 10) & 0x001F), 0) >> halfShift; pixelA = r | (g << 5) | (b << 10); } else { uint16_t r = std::min(((pixelA & 0x001F) + (otherPixel & 0x001F)) >> halfShift, 0x1F); uint16_t g = std::min((((pixelA >> 5) & 0x001F) + ((otherPixel >> 5) & 0x001F)) >> halfShift, 0x1F); uint16_t b = std::min((((pixelA >> 10) & 0x001F) + ((otherPixel >> 10) & 0x001F)) >> halfShift, 0x1F); pixelA = r | (g << 5) | (b << 10); } } template void Ppu::ApplyBrightness() { if(_screenBrightness != 15) { for(int x = _drawStartX; x <= _drawEndX; x++) { uint16_t &pixel = (forMainScreen ? _mainScreenBuffer : _subScreenBuffer)[x]; uint16_t r = (pixel & 0x1F) * _screenBrightness / 15; uint16_t g = ((pixel >> 5) & 0x1F) * _screenBrightness / 15; uint16_t b = ((pixel >> 10) & 0x1F) * _screenBrightness / 15; pixel = r | (g << 5) | (b << 10); } } } void Ppu::ConvertToHiRes() { uint16_t scanline = _overscanMode ? (_scanline - 1) : (_scanline + 6); if(_drawStartX > 0) { for(int x = 0; x < _drawStartX; x++) { _currentBuffer[(scanline << 10) + (x << 1)] = _currentBuffer[(scanline << 8) + x]; _currentBuffer[(scanline << 10) + (x << 1) + 1] = _currentBuffer[(scanline << 8) + x]; } memcpy(_currentBuffer + (scanline << 10) + 512, _currentBuffer + (scanline << 10), 512 * sizeof(uint16_t)); } for(int i = scanline - 1; i >= 0; i--) { for(int x = 0; x < 256; x++) { _currentBuffer[(i << 10) + (x << 1)] = _currentBuffer[(i << 8) + x]; _currentBuffer[(i << 10) + (x << 1) + 1] = _currentBuffer[(i << 8) + x]; } memcpy(_currentBuffer + (i << 10) + 512, _currentBuffer + (i << 10), 512 * sizeof(uint16_t)); } } void Ppu::ApplyHiResMode() { //When overscan mode is off, center the 224-line picture in the center of the 239-line output buffer uint16_t scanline = _overscanMode ? (_scanline - 1) : (_scanline + 6); bool useHighResOutput = _useHighResOutput || IsDoubleWidth() || IsDoubleHeight(); if(_useHighResOutput != useHighResOutput) { //Convert standard res picture to high resolution when the PPU starts drawing in high res mid frame ConvertToHiRes(); _useHighResOutput = useHighResOutput; } if(!_useHighResOutput) { memcpy(_currentBuffer + (scanline << 8) + _drawStartX, _mainScreenBuffer + _drawStartX, (_drawEndX - _drawStartX + 1) << 2); } else { uint32_t screenY = IsDoubleHeight() ? (_oddFrame ? ((scanline << 1) + 1) : (scanline << 1)) : (scanline << 1); uint32_t baseAddr = (screenY << 9); if(IsDoubleWidth()) { ApplyBrightness(); for(int x = _drawStartX; x <= _drawEndX; x++) { _currentBuffer[baseAddr + (x << 1)] = _subScreenBuffer[x]; _currentBuffer[baseAddr + (x << 1) + 1] = _mainScreenBuffer[x]; } } else { for(int x = _drawStartX; x <= _drawEndX; x++) { _currentBuffer[baseAddr + (x << 1)] = _mainScreenBuffer[x]; _currentBuffer[baseAddr + (x << 1) + 1] = _mainScreenBuffer[x]; } } if(!IsDoubleHeight()) { //Copy this line's content to the next line (between the current start & end bounds) memcpy( _currentBuffer + baseAddr + 512 + (_drawStartX << 1), _currentBuffer + baseAddr + (_drawStartX << 1), (_drawEndX - _drawStartX + 1) << 2 ); } } } template bool Ppu::ProcessMaskWindow(uint8_t activeWindowCount, int x) { if(activeWindowCount == 1) { if(_window[0].ActiveLayers[layerIndex]) { return _window[0].PixelNeedsMasking(x); } else { return _window[1].PixelNeedsMasking(x); } } else { switch(_maskLogic[layerIndex]) { default: case WindowMaskLogic::Or: return _window[0].PixelNeedsMasking(x) | _window[1].PixelNeedsMasking(x); case WindowMaskLogic::And: return _window[0].PixelNeedsMasking(x) & _window[1].PixelNeedsMasking(x); case WindowMaskLogic::Xor: return _window[0].PixelNeedsMasking(x) ^ _window[1].PixelNeedsMasking(x); case WindowMaskLogic::Xnor: return !(_window[0].PixelNeedsMasking(x) ^ _window[1].PixelNeedsMasking(x)); } } } void Ppu::ProcessWindowMaskSettings(uint8_t value, uint8_t offset) { _window[0].ActiveLayers[0 + offset] = (value & 0x02) != 0; _window[0].ActiveLayers[1 + offset] = (value & 0x20) != 0; _window[0].InvertedLayers[0 + offset] = (value & 0x01) != 0; _window[0].InvertedLayers[1 + offset] = (value & 0x10) != 0; _window[1].ActiveLayers[0 + offset] = (value & 0x08) != 0; _window[1].ActiveLayers[1 + offset] = (value & 0x80) != 0; _window[1].InvertedLayers[0 + offset] = (value & 0x04) != 0; _window[1].InvertedLayers[1 + offset] = (value & 0x40) != 0; } void Ppu::SendFrame() { if(_skipRender) { return; } _console->GetNotificationManager()->SendNotification(ConsoleNotificationType::PpuFrameDone); uint16_t width = _useHighResOutput ? 512 : 256; uint16_t height = _useHighResOutput ? 478 : 239; if(!_overscanMode) { //Clear the top 7 and bottom 8 rows int top = (_useHighResOutput ? 14 : 7); int bottom = (_useHighResOutput ? 16 : 8); memset(_currentBuffer, 0, width * top * sizeof(uint16_t)); memset(_currentBuffer + width * (height - bottom), 0, width * bottom * sizeof(uint16_t)); } bool isRewinding = _console->GetRewindManager()->IsRewinding(); #ifdef LIBRETRO _console->GetVideoDecoder()->UpdateFrameSync(_currentBuffer, width, height, _frameCount, isRewinding); #else if(isRewinding || _screenInterlace) { _console->GetVideoDecoder()->UpdateFrameSync(_currentBuffer, width, height, _frameCount, isRewinding); } else { _console->GetVideoDecoder()->UpdateFrame(_currentBuffer, width, height, _frameCount); _currentBuffer = _currentBuffer == _outputBuffers[0] ? _outputBuffers[1] : _outputBuffers[0]; } _frameSkipTimer.Reset(); #endif } bool Ppu::IsHighResOutput() { return _useHighResOutput; } uint16_t* Ppu::GetScreenBuffer() { return _currentBuffer; } uint8_t* Ppu::GetVideoRam() { return (uint8_t*)_vram; } uint8_t* Ppu::GetCgRam() { return (uint8_t*)_cgram; } uint8_t* Ppu::GetSpriteRam() { return (uint8_t*)_oamRam; } bool Ppu::IsDoubleHeight() { return _screenInterlace && (_bgMode == 5 || _bgMode == 6); } bool Ppu::IsDoubleWidth() { return _hiResMode || _bgMode == 5 || _bgMode == 6; } void Ppu::LatchLocationValues() { _horizontalLocation = GetCycle(); _verticalLocation = _scanline; _locationLatched = true; } void Ppu::UpdateOamAddress() { _oamEvaluationIndex = _oamRamAddress >> 1; _internalOamAddress = (_oamRamAddress << 1); } uint16_t Ppu::GetOamAddress() { if(_forcedVblank || _scanline >= _vblankStart) { return _internalOamAddress; } else { if(_memoryManager->GetHClock() <= 255 * 4) { return _oamEvaluationIndex << 2; } else { return _oamTimeIndex << 2; } } } void Ppu::UpdateVramReadBuffer() { uint16_t addr = GetVramAddress(); _vramReadBuffer = _vram[addr]; } uint16_t Ppu::GetVramAddress() { uint16_t addr = _vramAddress; switch(_vramAddressRemapping) { default: case 0: return addr; case 1: return (addr & 0xFF00) | ((addr & 0xE0) >> 5) | ((addr & 0x1F) << 3); case 2: return (addr & 0xFE00) | ((addr & 0x1C0) >> 6) | ((addr & 0x3F) << 3); case 3: return (addr & 0xFC00) | ((addr & 0x380) >> 7) | ((addr & 0x7F) << 3); } } uint8_t Ppu::Read(uint16_t addr) { switch(addr) { case 0x2134: _ppu1OpenBus = ((int16_t)_mode7.Matrix[0] * ((int16_t)_mode7.Matrix[1] >> 8)) & 0xFF; return _ppu1OpenBus; case 0x2135: _ppu1OpenBus = (((int16_t)_mode7.Matrix[0] * ((int16_t)_mode7.Matrix[1] >> 8)) >> 8) & 0xFF; return _ppu1OpenBus; case 0x2136: _ppu1OpenBus = (((int16_t)_mode7.Matrix[0] * ((int16_t)_mode7.Matrix[1] >> 8)) >> 16) & 0xFF; return _ppu1OpenBus; case 0x2137: //SLHV - Software Latch for H/V Counter //Latch values on read, and return open bus if(_regs->GetIoPortOutput() & 0x80) { //Only latch H/V counters if bit 7 of $4201 is set. LatchLocationValues(); } break; case 0x2138: { //OAMDATAREAD - Data for OAM read //When trying to read/write during rendering, the internal address used by the PPU's sprite rendering is used uint16_t oamAddr = GetOamAddress(); uint8_t value; if(oamAddr < 512) { value = _oamRam[oamAddr]; _console->ProcessPpuRead(oamAddr, value, SnesMemoryType::SpriteRam); } else { value = _oamRam[0x200 | (oamAddr & 0x1F)]; _console->ProcessPpuRead(0x200 | (oamAddr & 0x1F), value, SnesMemoryType::SpriteRam); } _internalOamAddress = (_internalOamAddress + 1) & 0x3FF; _ppu1OpenBus = value; return value; } case 0x2139: { //VMDATALREAD - VRAM Data Read low byte uint8_t returnValue = (uint8_t)_vramReadBuffer; _console->ProcessPpuRead(GetVramAddress(), returnValue, SnesMemoryType::VideoRam); if(!_vramAddrIncrementOnSecondReg) { UpdateVramReadBuffer(); _vramAddress = (_vramAddress + _vramIncrementValue) & 0x7FFF; } _ppu1OpenBus = returnValue; return returnValue; } case 0x213A: { //VMDATAHREAD - VRAM Data Read high byte uint8_t returnValue = (uint8_t)(_vramReadBuffer >> 8); _console->ProcessPpuRead(GetVramAddress() + 1, returnValue, SnesMemoryType::VideoRam); if(_vramAddrIncrementOnSecondReg) { UpdateVramReadBuffer(); _vramAddress = (_vramAddress + _vramIncrementValue) & 0x7FFF; } _ppu1OpenBus = returnValue; return returnValue; } case 0x213B: { //CGDATAREAD - CGRAM Data read uint8_t value; if(_cgramAddressLatch){ value = ((_cgram[_cgramAddress] >> 8) & 0x7F) | (_ppu2OpenBus & 0x80); _cgramAddress++; _console->ProcessPpuRead((_cgramAddress >> 1) + 1, value, SnesMemoryType::CGRam); } else { value = (uint8_t)_cgram[_cgramAddress]; _console->ProcessPpuRead(_cgramAddress >> 1, value, SnesMemoryType::CGRam); } _cgramAddressLatch = !_cgramAddressLatch; _ppu2OpenBus = value; return value; } case 0x213C: { //OPHCT - Horizontal Scanline Location uint8_t value; if(_horizontalLocToggle) { //"Note that the value read is only 9 bits: bits 1-7 of the high byte are PPU2 Open Bus." value = ((_horizontalLocation & 0x100) >> 8) | (_ppu2OpenBus & 0xFE); } else { value = _horizontalLocation & 0xFF; } _ppu2OpenBus = value; _horizontalLocToggle = !_horizontalLocToggle; return value; } case 0x213D: { //OPVCT - Vertical Scanline Location uint8_t value; if(_verticalLocationToggle) { //"Note that the value read is only 9 bits: bits 1-7 of the high byte are PPU2 Open Bus." value = ((_verticalLocation & 0x100) >> 8) | (_ppu2OpenBus & 0xFE); } else { value = _verticalLocation & 0xFF; } _ppu2OpenBus = value; _verticalLocationToggle = !_verticalLocationToggle; return value; } case 0x213E: { //STAT77 - PPU Status Flag and Version uint8_t value = ( (_timeOver ? 0x80 : 0) | (_rangeOver ? 0x40 : 0) | (_ppu1OpenBus & 0x10) | 0x01 //PPU (5c77) chip version ); _ppu1OpenBus = value; return value; } case 0x213F: { //STAT78 - PPU Status Flag and Version uint8_t value = ( (_oddFrame ? 0x80 : 0) | (_locationLatched ? 0x40 : 0) | (_ppu2OpenBus & 0x20) | (_console->GetRegion() == ConsoleRegion::Pal ? 0x10 : 0) | 0x02 //PPU (5c78) chip version ); if(_regs->GetIoPortOutput() & 0x80) { _locationLatched = false; //"The high/low selector is reset to elowf when $213F is read" (the selector is NOT reset when the counter is latched) _horizontalLocToggle = false; _verticalLocationToggle = false; } _ppu2OpenBus = value; return value; } default: MessageManager::Log("[Debug] Unimplemented register read: " + HexUtilities::ToHex(addr)); break; } uint16_t reg = addr & 0x210F; if((reg >= 0x2104 && reg <= 0x2106) || (reg >= 0x2108 && reg <= 0x210A)) { //Registers matching $21x4-6 or $21x8-A (where x is 0-2) return the last value read from any of the PPU1 registers $2134-6, $2138-A, or $213E. return _ppu1OpenBus; } return _console->GetMemoryManager()->GetOpenBus(); } void Ppu::Write(uint32_t addr, uint8_t value) { if(_scanline < _vblankStart) { RenderScanline(); } switch(addr) { case 0x2100: if(_forcedVblank && _scanline == _vblankStart) { //"writing this register on the first line of V-Blank (225 or 240, depending on overscan) when force blank is currently active causes the OAM Address Reset to occur." UpdateOamAddress(); } _forcedVblank = (value & 0x80) != 0; _screenBrightness = value & 0x0F; break; case 0x2101: _oamMode = (value & 0xE0) >> 5; _oamBaseAddress = (value & 0x07) << 13; _oamAddressOffset = (((value & 0x18) >> 3) + 1) << 12; break; case 0x2102: _oamRamAddress = (_oamRamAddress & 0x100) | value; UpdateOamAddress(); break; case 0x2103: _oamRamAddress = (_oamRamAddress & 0xFF) | ((value & 0x01) << 8); UpdateOamAddress(); _enableOamPriority = (value & 0x80) != 0; break; case 0x2104: { //When trying to read/write during rendering, the internal address used by the PPU's sprite rendering is used //This is approximated by _oamRenderAddress (but is not cycle accurate) - needed for Uniracers uint16_t oamAddr = GetOamAddress(); if(oamAddr < 512) { if(oamAddr & 0x01) { _console->ProcessPpuWrite(oamAddr - 1, _oamWriteBuffer, SnesMemoryType::SpriteRam); _oamRam[oamAddr - 1] = _oamWriteBuffer; _console->ProcessPpuWrite(oamAddr, value, SnesMemoryType::SpriteRam); _oamRam[oamAddr] = value; } else { _oamWriteBuffer = value; } } if(!_forcedVblank && _scanline < _vblankStart) { //During rendering the high table is also written to when writing to OAM oamAddr = 0x200 | ((oamAddr & 0x1F0) >> 4); } if(oamAddr >= 512) { uint16_t address = 0x200 | (oamAddr & 0x1F); if((oamAddr & 0x01) == 0) { _oamWriteBuffer = value; } _console->ProcessPpuWrite(address, value, SnesMemoryType::SpriteRam); _oamRam[address] = value; } _internalOamAddress = (_internalOamAddress + 1) & 0x3FF; break; } case 0x2105: if(_bgMode != (value & 0x07)) { MessageManager::Log("[Debug] Entering mode: " + std::to_string(value & 0x07) + " (SL: " + std::to_string(_scanline) + ")"); } _bgMode = value & 0x07; _mode1Bg3Priority = (value & 0x08) != 0; _layerConfig[0].LargeTiles = (value & 0x10) != 0; _layerConfig[1].LargeTiles = (value & 0x20) != 0; _layerConfig[2].LargeTiles = (value & 0x40) != 0; _layerConfig[3].LargeTiles = (value & 0x80) != 0; break; case 0x2106: { //MOSAIC - Screen Pixelation _mosaicSize = ((value & 0xF0) >> 4) + 1; uint8_t mosaicEnabled = value & 0x0F; if(!_mosaicEnabled && mosaicEnabled) { //"If this register is set during the frame, the starting scanline is the current scanline, otherwise it is the first visible scanline of the frame." //This is only done when mosaic is turned on from an off state (FF3 mosaic effect looks wrong otherwise) _mosaicScanlineCounter = _mosaicSize; } _mosaicEnabled = mosaicEnabled; break; } case 0x2107: case 0x2108: case 0x2109: case 0x210A: //BG 1-4 Tilemap Address and Size (BG1SC, BG2SC, BG3SC, BG4SC) _layerConfig[addr - 0x2107].TilemapAddress = (value & 0x7C) << 8; _layerConfig[addr - 0x2107].DoubleWidth = (value & 0x01) != 0; _layerConfig[addr - 0x2107].DoubleHeight = (value & 0x02) != 0; break; case 0x210B: case 0x210C: //BG1+2 / BG3+4 Chr Address (BG12NBA / BG34NBA) _layerConfig[(addr - 0x210B) * 2].ChrAddress = (value & 0x07) << 12; _layerConfig[(addr - 0x210B) * 2 + 1].ChrAddress = (value & 0x70) << 8; break; case 0x210D: //M7HOFS - Mode 7 BG Horizontal Scroll //BG1HOFS - BG1 Horizontal Scroll _mode7.HScroll = ((value << 8) | (_mode7.ValueLatch)) & 0x1FFF; _mode7.ValueLatch = value; //no break, keep executing to set the matching BG1 HScroll register, too case 0x210F: case 0x2111: case 0x2113: //BGXHOFS - BG1/2/3/4 Horizontal Scroll _layerConfig[(addr - 0x210D) >> 1].HScroll = ((value << 8) | (_hvScrollLatchValue & ~0x07) | (_hScrollLatchValue & 0x07)) & 0x3FF; _hvScrollLatchValue = value; _hScrollLatchValue = value; break; case 0x210E: //M7VOFS - Mode 7 BG Vertical Scroll //BG1VOFS - BG1 Vertical Scroll _mode7.VScroll = ((value << 8) | (_mode7.ValueLatch)) & 0x1FFF; _mode7.ValueLatch = value; //no break, keep executing to set the matching BG1 HScroll register, too case 0x2110: case 0x2112: case 0x2114: //BGXVOFS - BG1/2/3/4 Vertical Scroll _layerConfig[(addr - 0x210E) >> 1].VScroll = ((value << 8) | _hvScrollLatchValue) & 0x3FF; _hvScrollLatchValue = value; break; case 0x2115: //VMAIN - Video Port Control switch(value & 0x03) { case 0: _vramIncrementValue = 1; break; case 1: _vramIncrementValue = 32; break; case 2: case 3: _vramIncrementValue = 128; break; } _vramAddressRemapping = (value & 0x0C) >> 2; _vramAddrIncrementOnSecondReg = (value & 0x80) != 0; break; case 0x2116: //VMADDL - VRAM Address low byte _vramAddress = (_vramAddress & 0x7F00) | value; UpdateVramReadBuffer(); break; case 0x2117: //VMADDH - VRAM Address high byte _vramAddress = (_vramAddress & 0x00FF) | ((value & 0x7F) << 8); UpdateVramReadBuffer(); break; case 0x2118: //VMDATAL - VRAM Data Write low byte if(_scanline >= _vblankStart || _forcedVblank) { //Only write the value if in vblank or forced blank (writes to VRAM outside vblank/forced blank are not allowed) _console->ProcessPpuWrite(GetVramAddress() << 1, value, SnesMemoryType::VideoRam); _vram[GetVramAddress()] = value | (_vram[GetVramAddress()] & 0xFF00); } //The VRAM address is incremented even outside of vblank/forced blank if(!_vramAddrIncrementOnSecondReg) { _vramAddress = (_vramAddress + _vramIncrementValue) & 0x7FFF; } break; case 0x2119: //VMDATAH - VRAM Data Write high byte if(_scanline >= _vblankStart || _forcedVblank) { //Only write the value if in vblank or forced blank (writes to VRAM outside vblank/forced blank are not allowed) _console->ProcessPpuWrite((GetVramAddress() << 1) + 1, value, SnesMemoryType::VideoRam); _vram[GetVramAddress()] = (value << 8) | (_vram[GetVramAddress()] & 0xFF); } //The VRAM address is incremented even outside of vblank/forced blank if(_vramAddrIncrementOnSecondReg) { _vramAddress = (_vramAddress + _vramIncrementValue) & 0x7FFF; } break; case 0x211A: //M7SEL - Mode 7 Settings _mode7.LargeMap = (value & 0x80) != 0; _mode7.FillWithTile0 = (value & 0x40) != 0; _mode7.HorizontalMirroring = (value & 0x01) != 0; _mode7.VerticalMirroring = (value & 0x02) != 0; break; case 0x211B: case 0x211C: case 0x211D: case 0x211E: //M7A/B/C/D - Mode 7 Matrix A/B/C/D (A/B are also used with $2134/6) _mode7.Matrix[addr - 0x211B] = (value << 8) | _mode7.ValueLatch; _mode7.ValueLatch = value; break; case 0x211F: //M7X - Mode 7 Center X _mode7.CenterX = ((value << 8) | _mode7.ValueLatch); _mode7.ValueLatch = value; break; case 0x2120: //M7Y - Mode 7 Center Y _mode7.CenterY = ((value << 8) | _mode7.ValueLatch); _mode7.ValueLatch = value; break; case 0x2121: //CGRAM Address(CGADD) _cgramAddress = value; _cgramAddressLatch = false; break; case 0x2122: //CGRAM Data write (CGDATA) if(_cgramAddressLatch) { //MSB ignores the 7th bit (colors are 15-bit only) _console->ProcessPpuWrite(_cgramAddress >> 1, _cgramWriteBuffer, SnesMemoryType::CGRam); _console->ProcessPpuWrite((_cgramAddress >> 1) + 1, value & 0x7F, SnesMemoryType::CGRam); _cgram[_cgramAddress] = _cgramWriteBuffer | ((value & 0x7F) << 8); _cgramAddress++; } else { _cgramWriteBuffer = value; } _cgramAddressLatch = !_cgramAddressLatch; break; case 0x2123: //W12SEL - Window Mask Settings for BG1 and BG2 ProcessWindowMaskSettings(value, 0); break; case 0x2124: //W34SEL - Window Mask Settings for BG3 and BG4 ProcessWindowMaskSettings(value, 2); break; case 0x2125: //WOBJSEL - Window Mask Settings for OBJ and Color Window ProcessWindowMaskSettings(value, 4); break; case 0x2126: //WH0 - Window 1 Left Position _window[0].Left = value; break; case 0x2127: //WH1 - Window 1 Right Position _window[0].Right = value; break; case 0x2128: //WH2 - Window 2 Left Position _window[1].Left = value; break; case 0x2129: //WH3 - Window 2 Right Position _window[1].Right = value; break; case 0x212A: //WBGLOG - Window mask logic for BG _maskLogic[0] = (WindowMaskLogic)(value & 0x03); _maskLogic[1] = (WindowMaskLogic)((value >> 2) & 0x03); _maskLogic[2] = (WindowMaskLogic)((value >> 4) & 0x03); _maskLogic[3] = (WindowMaskLogic)((value >> 6) & 0x03); break; case 0x212B: //WOBJLOG - Window mask logic for OBJs and Color Window _maskLogic[4] = (WindowMaskLogic)((value >> 0) & 0x03); _maskLogic[5] = (WindowMaskLogic)((value >> 2) & 0x03); break; case 0x212C: //TM - Main Screen Designation _mainScreenLayers = value & 0x1F; break; case 0x212D: //TS - Subscreen Designation _subScreenLayers = value & 0x1F; break; case 0x212E: //TMW - Window Mask Designation for the Main Screen for(int i = 0; i < 5; i++) { _windowMaskMain[i] = ((value >> i) & 0x01) != 0; } break; case 0x212F: //TSW - Window Mask Designation for the Subscreen for(int i = 0; i < 5; i++) { _windowMaskSub[i] = ((value >> i) & 0x01) != 0; } break; case 0x2130: //CGWSEL - Color Addition Select _colorMathClipMode = (ColorWindowMode)((value >> 6) & 0x03); _colorMathPreventMode = (ColorWindowMode)((value >> 4) & 0x03); _colorMathAddSubscreen = (value & 0x02) != 0; _directColorMode = (value & 0x01) != 0; break; case 0x2131: //CGADSUB - Color math designation _colorMathEnabled = value & 0x3F; _colorMathSubstractMode = (value & 0x80) != 0; _colorMathHalveResult = (value & 0x40) != 0; break; case 0x2132: //COLDATA - Fixed Color Data if(value & 0x80) { //B _fixedColor = (_fixedColor & ~0x7C00) | ((value & 0x1F) << 10); } if(value & 0x40) { //G _fixedColor = (_fixedColor & ~0x3E0) | ((value & 0x1F) << 5); } if(value & 0x20) { //R _fixedColor = (_fixedColor & ~0x1F) | (value & 0x1F); } break; case 0x2133: //SETINI - Screen Mode/Video Select //_externalSync = (value & 0x80) != 0; //NOT USED _mode7.ExtBgEnabled = (value & 0x40) != 0; _hiResMode = (value & 0x08) != 0; _overscanMode = (value & 0x04) != 0; _vblankStart = _overscanMode ? 240 : 225; _objInterlace = (value & 0x02) != 0; _screenInterlace = (value & 0x01) != 0; break; default: MessageManager::Log("[Debug] Unimplemented register write: " + HexUtilities::ToHex(addr) + " = " + HexUtilities::ToHex(value)); break; } } void Ppu::Serialize(Serializer &s) { uint16_t unused_oamRenderAddress = 0; s.Stream( _forcedVblank, _screenBrightness, _scanline, _frameCount, _drawStartX, _drawEndX, _bgMode, _mode1Bg3Priority, _mainScreenLayers, _subScreenLayers, _vramAddress, _vramIncrementValue, _vramAddressRemapping, _vramAddrIncrementOnSecondReg, _vramReadBuffer, _ppu1OpenBus, _ppu2OpenBus, _cgramAddress, _mosaicSize, _mosaicEnabled, _mosaicScanlineCounter, _oamMode, _oamBaseAddress, _oamAddressOffset, _oamRamAddress, _enableOamPriority, _internalOamAddress, _oamWriteBuffer, _timeOver, _rangeOver, _hiResMode, _screenInterlace, _objInterlace, _overscanMode, _directColorMode, _colorMathClipMode, _colorMathPreventMode, _colorMathAddSubscreen, _colorMathEnabled, _colorMathSubstractMode, _colorMathHalveResult, _fixedColor, _hvScrollLatchValue, _hScrollLatchValue, _horizontalLocation, _horizontalLocToggle, _verticalLocation, _verticalLocationToggle, _locationLatched, _maskLogic[0], _maskLogic[1], _maskLogic[2], _maskLogic[3], _maskLogic[4], _maskLogic[5], _windowMaskMain[0], _windowMaskMain[1], _windowMaskMain[2], _windowMaskMain[3], _windowMaskMain[4], _windowMaskSub[0], _windowMaskSub[1], _windowMaskSub[2], _windowMaskSub[3], _windowMaskSub[4], _mode7.CenterX, _mode7.CenterY, _mode7.ExtBgEnabled, _mode7.FillWithTile0, _mode7.HorizontalMirroring, _mode7.HScroll, _mode7.LargeMap, _mode7.Matrix[0], _mode7.Matrix[1], _mode7.Matrix[2], _mode7.Matrix[3], _mode7.ValueLatch, _mode7.VerticalMirroring, _mode7.VScroll, unused_oamRenderAddress, _oddFrame, _vblankStart, _cgramAddressLatch, _cgramWriteBuffer ); for(int i = 0; i < 4; i++) { s.Stream( _layerConfig[i].ChrAddress, _layerConfig[i].DoubleHeight, _layerConfig[i].DoubleWidth, _layerConfig[i].HScroll, _layerConfig[i].LargeTiles, _layerConfig[i].TilemapAddress, _layerConfig[i].VScroll ); } for(int i = 0; i < 2; i++) { s.Stream( _window[i].ActiveLayers[0], _window[i].ActiveLayers[1], _window[i].ActiveLayers[2], _window[i].ActiveLayers[3], _window[i].ActiveLayers[4], _window[i].ActiveLayers[5], _window[i].InvertedLayers[0], _window[i].InvertedLayers[1], _window[i].InvertedLayers[2], _window[i].InvertedLayers[3], _window[i].InvertedLayers[4], _window[i].InvertedLayers[5], _window[i].Left, _window[i].Right ); } s.StreamArray(_vram, Ppu::VideoRamSize >> 1); s.StreamArray(_oamRam, Ppu::SpriteRamSize); s.StreamArray(_cgram, Ppu::CgRamSize >> 1); for(int i = 0; i < 4; i++) { for(int j = 0; j < 33; j++) { s.Stream( _layerData[i].Tiles[j].ChrData[0], _layerData[i].Tiles[j].ChrData[1], _layerData[i].Tiles[j].ChrData[2], _layerData[i].Tiles[j].ChrData[3], _layerData[i].Tiles[j].TilemapData, _layerData[i].Tiles[j].VScroll ); } } s.Stream(_hOffset, _vOffset, _fetchBgStart, _fetchBgEnd, _fetchSpriteStart, _fetchSpriteEnd); } /* Everything below this point is used to select the proper arguments for templates */ template void Ppu::RenderTilemap() { if(_directColorMode) { RenderTilemap(); } else { RenderTilemap(); } } template void Ppu::RenderTilemap() { bool applyMosaic = ((_mosaicEnabled >> layerIndex) & 0x01) != 0 && (_mosaicSize > 1 || _bgMode == 5 || _bgMode == 6); if(applyMosaic) { RenderTilemap(); } else { RenderTilemap(); } } template void Ppu::RenderTilemap() { uint8_t activeWindowCount = 0; if((forMainScreen && _windowMaskMain[layerIndex]) || (!forMainScreen && _windowMaskSub[layerIndex])) { activeWindowCount = (uint8_t)_window[0].ActiveLayers[layerIndex] + (uint8_t)_window[1].ActiveLayers[layerIndex]; } if(activeWindowCount == 0) { RenderTilemap(); } else if(activeWindowCount == 1) { RenderTilemap(); } else { RenderTilemap(); } } template void Ppu::RenderTilemap() { if(!IsRenderRequired(layerIndex) || processHighPriority && !_layerData[layerIndex].HasPriorityTiles) { return; } if(_bgMode == 5 || _bgMode == 6) { RenderTilemap(); } else { RenderTilemap(); } } template void Ppu::RenderTilemapMode7() { bool applyMosaic = ((_mosaicEnabled >> layerIndex) & 0x01) != 0; if(applyMosaic) { RenderTilemapMode7(); } else { RenderTilemapMode7(); } } template void Ppu::RenderTilemapMode7() { if(_directColorMode) { RenderTilemapMode7(); } else { RenderTilemapMode7(); } }