Mesen-SX/Core/MemoryManager.cpp
2019-07-15 18:30:13 -04:00

474 lines
12 KiB
C++

#include "stdafx.h"
#include "MemoryManager.h"
#include "Console.h"
#include "BaseCartridge.h"
#include "Cpu.h"
#include "Ppu.h"
#include "DmaController.h"
#include "RegisterHandlerA.h"
#include "RegisterHandlerB.h"
#include "RamHandler.h"
#include "MessageManager.h"
#include "DebugTypes.h"
#include "EmuSettings.h"
#include "../Utilities/Serializer.h"
#include "../Utilities/HexUtilities.h"
void MemoryManager::Initialize(Console *console)
{
_masterClock = 0;
_openBus = 0;
_cpuSpeed = 8;
_console = console;
_regs = console->GetInternalRegisters().get();
_cpu = console->GetCpu().get();
_ppu = console->GetPpu().get();
_workRam = new uint8_t[MemoryManager::WorkRamSize];
_console->GetSettings()->InitializeRam(_workRam, MemoryManager::WorkRamSize);
_registerHandlerA.reset(new RegisterHandlerA(
console->GetDmaController().get(),
console->GetInternalRegisters().get(),
console->GetControlManager().get()
));
_registerHandlerB.reset(new RegisterHandlerB(
_console,
_ppu,
console->GetSpc().get(),
_workRam
));
memset(_handlers, 0, sizeof(_handlers));
memset(_hasEvent, 0, sizeof(_hasEvent));
_hasEvent[276*4] = true;
_hasEvent[285*4] = true;
_hasEvent[1360] = true;
_hasEvent[1364] = true;
_hasEvent[1368] = true;
for(uint32_t i = 0; i < 128 * 1024; i += 0x1000) {
_workRamHandlers.push_back(unique_ptr<RamHandler>(new RamHandler(_workRam, i, MemoryManager::WorkRamSize, SnesMemoryType::WorkRam)));
}
RegisterHandler(0x7E, 0x7F, 0x0000, 0xFFFF, _workRamHandlers);
RegisterHandler(0x00, 0x3F, 0x2000, 0x2FFF, _registerHandlerB.get());
RegisterHandler(0x80, 0xBF, 0x2000, 0x2FFF, _registerHandlerB.get());
RegisterHandler(0x00, 0x3F, 0x4000, 0x4FFF, _registerHandlerA.get());
RegisterHandler(0x80, 0xBF, 0x4000, 0x4FFF, _registerHandlerA.get());
RegisterHandler(0x00, 0x3F, 0x0000, 0x0FFF, _workRamHandlers[0].get());
RegisterHandler(0x80, 0xBF, 0x0000, 0x0FFF, _workRamHandlers[0].get());
RegisterHandler(0x00, 0x3F, 0x1000, 0x1FFF, _workRamHandlers[1].get());
RegisterHandler(0x80, 0xBF, 0x1000, 0x1FFF, _workRamHandlers[1].get());
console->GetCartridge()->RegisterHandlers(*this);
GenerateMasterClockTable();
UpdateEvents();
}
MemoryManager::~MemoryManager()
{
delete[] _workRam;
}
void MemoryManager::Reset()
{
_masterClock = 0;
_hClock = 0;
UpdateEvents();
}
void MemoryManager::RegisterHandler(uint8_t startBank, uint8_t endBank, uint16_t startPage, uint16_t endPage, vector<unique_ptr<IMemoryHandler>> &handlers, uint16_t pageIncrement, uint16_t startPageNumber)
{
if(handlers.empty()) {
return;
}
while(startPageNumber >= handlers.size()) {
startPageNumber -= (uint32_t)handlers.size();
}
uint32_t pageNumber = startPageNumber;
for(uint32_t i = startBank; i <= endBank; i++) {
uint32_t baseAddress = i << 16;
pageNumber += pageIncrement;
for(uint32_t j = startPage; j <= endPage; j+=0x1000) {
_handlers[(i << 4) | (j >> 12)] = handlers[pageNumber].get();
//MessageManager::Log("Map [$" + HexUtilities::ToHex(i) + ":" + HexUtilities::ToHex(j)[1] + "xxx] to page number " + HexUtilities::ToHex(pageNumber));
pageNumber++;
if(pageNumber >= handlers.size()) {
pageNumber = 0;
}
}
}
}
void MemoryManager::RegisterHandler(uint8_t startBank, uint8_t endBank, uint16_t startAddr, uint16_t endAddr, IMemoryHandler* handler)
{
if((startAddr & 0xFFF) != 0 || (endAddr & 0xFFF) != 0xFFF || startBank > endBank || startAddr > endAddr) {
throw std::runtime_error("invalid start/end address");
}
for(uint32_t bank = startBank; bank <= endBank; bank++) {
for(uint32_t addr = startAddr; addr < endAddr; addr += 0x1000) {
/*if(_handlers[addr >> 12]) {
throw std::runtime_error("handler already set");
}*/
_handlers[(bank << 4) | (addr >> 12)] = handler;
}
}
}
void MemoryManager::GenerateMasterClockTable()
{
for(int j = 0; j < 2; j++) {
for(int i = 0; i < 0x10000; i++) {
uint8_t bank = (i & 0xFF00) >> 8;
if(bank >= 0x40 && bank <= 0x7F) {
//Slow
_masterClockTable[j][i] = 8;
} else if(bank >= 0xC0) {
//Banks $C0-$FF
//Slow or fast (depending on register)
_masterClockTable[j][i] = j == 1 ? 6 : 8;
} else {
//Banks $00-$3F and $80-$BF
uint8_t page = (i & 0xFF);
if(page <= 0x1F) {
//Slow
_masterClockTable[j][i] = 8;
} else if(page >= 0x20 && page <= 0x3F) {
//Fast
_masterClockTable[j][i] = 6;
} else if(page == 0x40 || page == 0x41) {
//Extra slow
_masterClockTable[j][i] = 12;
} else if(page >= 0x42 && page <= 0x5F) {
//Fast
_masterClockTable[j][i] = 6;
} else if(page >= 0x60 && page <= 0x7F) {
//Slow
_masterClockTable[j][i] = 8;
} else if(bank <= 0x3F) {
//Slow
_masterClockTable[j][i] = 8;
} else {
//page >= $80
//Slow or fast (depending on register)
_masterClockTable[j][i] = j == 1 ? 6 : 8;
}
}
}
}
}
void MemoryManager::IncMasterClock4()
{
Exec();
Exec();
}
void MemoryManager::IncMasterClock6()
{
Exec();
Exec();
Exec();
}
void MemoryManager::IncMasterClock8()
{
Exec();
Exec();
Exec();
Exec();
}
void MemoryManager::IncMasterClock40()
{
Exec(); Exec(); Exec(); Exec(); Exec();
Exec(); Exec(); Exec(); Exec(); Exec();
Exec(); Exec(); Exec(); Exec(); Exec();
Exec(); Exec(); Exec(); Exec(); Exec();
}
void MemoryManager::IncMasterClockStartup()
{
for(int i = 0; i < 182 / 2; i++) {
Exec();
}
}
void MemoryManager::IncrementMasterClockValue(uint16_t cyclesToRun)
{
switch(cyclesToRun) {
case 12: Exec();
case 10: Exec();
case 8: Exec();
case 6: Exec();
case 4: Exec();
case 2: Exec();
}
}
void MemoryManager::UpdateEvents()
{
_hasEvent[_hdmaInitPosition] = false;
_hasEvent[_dramRefreshPosition] = false;
if(_ppu->GetScanline() == 0) {
_hdmaInitPosition = 12 + (_masterClock & 0x07);
_hasEvent[_hdmaInitPosition] = true;
}
_dramRefreshPosition = 538 - (_masterClock & 0x07);
_hasEvent[_dramRefreshPosition] = true;
}
void MemoryManager::Exec()
{
_masterClock += 2;
_hClock += 2;
if(_hasEvent[_hClock]) {
if(_hClock >= 1360 && _ppu->ProcessEndOfScanline(_hClock)) {
_hClock = 0;
UpdateEvents();
}
if((_hClock & 0x03) == 0) {
_console->ProcessPpuCycle();
_regs->ProcessIrqCounters();
if(_hClock == 276 * 4 && _ppu->GetScanline() < _ppu->GetVblankStart()) {
_console->GetDmaController()->BeginHdmaTransfer();
}
}
if(_hClock == _hdmaInitPosition && _ppu->GetScanline() == 0) {
_console->GetDmaController()->BeginHdmaInit();
}
if(_hClock == _dramRefreshPosition) {
IncMasterClock40();
_cpu->IncreaseCycleCount<5>();
}
} else if((_hClock & 0x03) == 0) {
_console->ProcessPpuCycle();
_regs->ProcessIrqCounters();
}
}
uint8_t MemoryManager::Read(uint32_t addr, MemoryOperationType type)
{
IncrementMasterClockValue(_cpuSpeed - 4);
uint8_t value;
if(_handlers[addr >> 12]) {
value = _handlers[addr >> 12]->Read(addr);
_openBus = value;
} else {
//open bus
value = _openBus;
MessageManager::Log("[Debug] Read - missing handler: $" + HexUtilities::ToHex(addr));
}
_console->ProcessCpuRead(addr, value, type);
IncMasterClock4();
return value;
}
uint8_t MemoryManager::ReadDma(uint32_t addr, bool forBusA)
{
IncMasterClock4();
uint8_t value;
IMemoryHandler* handlers = _handlers[addr >> 12];
if(handlers) {
if(forBusA && handlers == _registerHandlerB.get()) {
//Trying to read from bus B using bus A returns open bus
value = _openBus;
} else if(handlers == _registerHandlerA.get()) {
uint16_t regAddr = addr & 0xFFFF;
if(regAddr == 0x420B || regAddr == 0x420C || (regAddr >= 0x4300 && regAddr <= 0x437F)) {
//Trying to read the DMA controller with DMA returns open bus
value = _openBus;
} else {
value = handlers->Read(addr);
}
} else {
value = handlers->Read(addr);
}
_openBus = value;
} else {
//open bus
value = _openBus;
MessageManager::Log("[Debug] Read - missing handler: $" + HexUtilities::ToHex(addr));
}
_console->ProcessCpuRead(addr, value, MemoryOperationType::DmaRead);
return value;
}
uint8_t MemoryManager::Peek(uint32_t addr)
{
//Read, without triggering side-effects
uint8_t value = 0;
if(_handlers[addr >> 12]) {
value = _handlers[addr >> 12]->Peek(addr);
}
return value;
}
uint16_t MemoryManager::PeekWord(uint32_t addr)
{
uint8_t lsb = Peek(addr);
uint8_t msb = Peek((addr + 1) & 0xFFFFFF);
return (msb << 8) | lsb;
}
void MemoryManager::PeekBlock(uint32_t addr, uint8_t *dest)
{
if(_handlers[addr >> 12]) {
_handlers[addr >> 12]->PeekBlock(dest);
} else {
memset(dest, 0, 0x1000);
}
}
void MemoryManager::Write(uint32_t addr, uint8_t value, MemoryOperationType type)
{
IncrementMasterClockValue(_cpuSpeed);
_console->ProcessCpuWrite(addr, value, type);
if(_handlers[addr >> 12]) {
_handlers[addr >> 12]->Write(addr, value);
} else {
MessageManager::Log("[Debug] Write - missing handler: $" + HexUtilities::ToHex(addr) + " = " + HexUtilities::ToHex(value));
}
}
void MemoryManager::WriteDma(uint32_t addr, uint8_t value, bool forBusA)
{
IncMasterClock4();
_console->ProcessCpuWrite(addr, value, MemoryOperationType::DmaWrite);
IMemoryHandler* handlers = _handlers[addr >> 12];
if(handlers) {
if(forBusA && handlers == _registerHandlerB.get()) {
//Trying to write to bus B using bus A does nothing
} else if(handlers == _registerHandlerA.get()) {
uint16_t regAddr = addr & 0xFFFF;
if(regAddr == 0x420B || regAddr == 0x420C || (regAddr >= 0x4300 && regAddr <= 0x437F)) {
//Trying to write to the DMA controller with DMA does nothing
} else {
handlers->Write(addr, value);
}
} else {
handlers->Write(addr, value);
}
} else {
MessageManager::Log("[Debug] Write - missing handler: $" + HexUtilities::ToHex(addr) + " = " + HexUtilities::ToHex(value));
}
}
uint8_t MemoryManager::GetOpenBus()
{
return _openBus;
}
uint64_t MemoryManager::GetMasterClock()
{
return _masterClock;
}
uint16_t MemoryManager::GetHClock()
{
return _hClock;
}
uint8_t * MemoryManager::DebugGetWorkRam()
{
return _workRam;
}
uint8_t MemoryManager::GetCpuSpeed(uint32_t addr)
{
return _masterClockTable[(uint8_t)_regs->IsFastRomEnabled()][addr >> 8];
}
uint8_t MemoryManager::GetCpuSpeed()
{
return _cpuSpeed;
}
void MemoryManager::SetCpuSpeed(uint8_t speed)
{
_cpuSpeed = speed;
}
bool MemoryManager::IsRegister(uint32_t cpuAddress)
{
return _handlers[cpuAddress >> 12] == _registerHandlerA.get() || _handlers[cpuAddress >> 12] == _registerHandlerB.get();
}
bool MemoryManager::IsWorkRam(uint32_t cpuAddress)
{
IMemoryHandler* handler = _handlers[cpuAddress >> 12];
return handler && handler->GetMemoryType() == SnesMemoryType::WorkRam;
}
AddressInfo MemoryManager::GetAbsoluteAddress(uint32_t addr)
{
if(_handlers[addr >> 12]) {
return _handlers[addr >> 12]->GetAbsoluteAddress(addr);
} else {
return { -1, SnesMemoryType::CpuMemory };
}
}
int MemoryManager::GetRelativeAddress(AddressInfo &address, int32_t cpuAddress)
{
if(address.Type == SnesMemoryType::WorkRam) {
return 0x7E0000 | address.Address;
}
uint16_t startPosition;
if(cpuAddress < 0) {
uint8_t bank = _console->GetCpu()->GetState().K;
startPosition = ((bank & 0xC0) << 4);
} else {
startPosition = (cpuAddress >> 12) & 0xF00;
}
for(int i = startPosition; i <= 0xFFF; i++) {
if(_handlers[i]) {
AddressInfo addrInfo = _handlers[i]->GetAbsoluteAddress(address.Address & 0xFFF);
if(addrInfo.Type == address.Type && addrInfo.Address == address.Address) {
return (i << 12) | (address.Address & 0xFFF);
}
}
}
for(int i = 0; i < startPosition; i++) {
if(_handlers[i]) {
AddressInfo addrInfo = _handlers[i]->GetAbsoluteAddress(address.Address & 0xFFF);
if(addrInfo.Type == address.Type && addrInfo.Address == address.Address) {
return (i << 12) | (address.Address & 0xFFF);
}
}
}
return -1;
}
void MemoryManager::Serialize(Serializer &s)
{
s.Stream(_masterClock, _openBus, _cpuSpeed, _hClock, _dramRefreshPosition, _hdmaInitPosition);
s.StreamArray(_workRam, MemoryManager::WorkRamSize);
s.StreamArray(_hasEvent, sizeof(_hasEvent));
}