Mesen-SX/Core/Ppu.cpp
2020-12-19 23:30:09 +03:00

2811 lines
76 KiB
C++

#include "stdafx.h"
#include "Ppu.h"
#include "Console.h"
#include "MemoryManager.h"
#include "Cpu.h"
#include "Spc.h"
#include "InternalRegisters.h"
#include "EmuSettings.h"
#include "ControlManager.h"
#include "VideoDecoder.h"
#include "VideoRenderer.h"
#include "NotificationManager.h"
#include "DmaController.h"
#include "MessageManager.h"
#include "EventType.h"
#include "RewindManager.h"
#include "../Utilities/HexUtilities.h"
#include "../Utilities/Serializer.h"
static constexpr uint8_t _oamSizes[8][2][2] = {
{{1, 1}, {2, 2}}, //8x8 + 16x16
{{1, 1}, {4, 4}}, //8x8 + 32x32
{{1, 1}, {8, 8}}, //8x8 + 64x64
{{2, 2}, {4, 4}}, //16x16 + 32x32
{{2, 2}, {8, 8}}, //16x16 + 64x64
{{4, 4}, {8, 8}}, //32x32 + 64x64
{{2, 4}, {4, 8}}, //16x32 + 32x64
{{2, 4}, {4, 4}} //16x32 + 32x32
};
Ppu::Ppu(Console* console)
{
_console = console;
_vram = new uint16_t[Ppu::VideoRamSize >> 1];
_outputBuffers[0] = new uint16_t[512 * 478];
_outputBuffers[1] = new uint16_t[512 * 478];
memset(_outputBuffers[0], 0, 512 * 478 * sizeof(uint16_t));
memset(_outputBuffers[1], 0, 512 * 478 * sizeof(uint16_t));
}
Ppu::~Ppu()
{
delete[] _vram;
delete[] _outputBuffers[0];
delete[] _outputBuffers[1];
}
void Ppu::PowerOn()
{
_skipRender = false;
_regs = _console->GetInternalRegisters().get();
_settings = _console->GetSettings().get();
_spc = _console->GetSpc().get();
_memoryManager = _console->GetMemoryManager().get();
_currentBuffer = _outputBuffers[0];
_state = {};
_state.ForcedVblank = true;
_state.VramIncrementValue = 1;
if (_settings->GetEmulationConfig().EnableRandomPowerOnState)
{
RandomizeState();
}
_settings->InitializeRam(_vram, Ppu::VideoRamSize);
_settings->InitializeRam(_cgram, Ppu::CgRamSize);
_settings->InitializeRam(_oamRam, Ppu::SpriteRamSize);
memset(_spriteIndexes, 0xFF, sizeof(_spriteIndexes));
UpdateNmiScanline();
}
void Ppu::Reset()
{
_scanline = 0;
_state.ForcedVblank = true;
_oddFrame = 0;
}
uint32_t Ppu::GetFrameCount()
{
return _frameCount;
}
uint16_t Ppu::GetScanline()
{
return _scanline;
}
uint16_t Ppu::GetCycle()
{
//"normally dots 323 and 327 are 6 master cycles instead of 4."
uint16_t hClock = _memoryManager->GetHClock();
if (hClock <= 1292)
{
return hClock >> 2;
}
else if (hClock <= 1310)
{
return (hClock - 2) >> 2;
}
else
{
return (hClock - 4) >> 2;
}
}
uint16_t Ppu::GetNmiScanline()
{
return _nmiScanline;
}
uint16_t Ppu::GetVblankStart()
{
return _vblankStartScanline;
}
PpuState Ppu::GetState()
{
PpuState state;
GetState(state, false);
return state;
}
void Ppu::GetState(PpuState& state, bool returnPartialState)
{
if (!returnPartialState)
{
state = _state;
}
state.Cycle = GetCycle();
state.Scanline = _scanline;
state.HClock = _memoryManager->GetHClock();
state.FrameCount = _frameCount;
}
template <bool hiResMode>
void Ppu::GetTilemapData(uint8_t layerIndex, uint8_t columnIndex)
{
/* The current layer's options */
LayerConfig& config = _state.Layers[layerIndex];
uint16_t vScroll = config.VScroll;
uint16_t hScroll = hiResMode ? (config.HScroll << 1) : config.HScroll;
if (_hOffset || _vOffset)
{
uint16_t enableBit = layerIndex == 0 ? 0x2000 : 0x4000;
if (_state.BgMode == 4)
{
if ((_hOffset & 0x8000) == 0 && (_hOffset & enableBit))
{
hScroll = (hScroll & 0x07) | (_hOffset & 0x3F8);
}
if ((_hOffset & 0x8000) != 0 && (_hOffset & enableBit))
{
vScroll = (_hOffset & 0x3FF);
}
}
else
{
if (_hOffset & enableBit)
{
hScroll = (hScroll & 0x07) | (_hOffset & 0x3F8);
}
if (_vOffset & enableBit)
{
vScroll = (_vOffset & 0x3FF);
}
}
}
if (hiResMode)
{
hScroll >>= 1;
}
uint16_t realY = IsDoubleHeight() ? (_oddFrame ? ((_scanline << 1) + 1) : (_scanline << 1)) : _scanline;
if (_state.MosaicEnabled && (_state.MosaicEnabled & (1 << layerIndex)))
{
//Keep the "scanline" to what it was at the start of this mosaic block
realY -= _state.MosaicSize - _mosaicScanlineCounter;
if (IsDoubleHeight())
{
realY -= _state.MosaicSize - _mosaicScanlineCounter;
}
}
/* The current row of tiles (e.g scanlines 16-23 is row 2) */
uint16_t row = (realY + vScroll) >> (config.LargeTiles ? 4 : 3);
/* Tilemap offset based on the current row & tilemap size options */
uint16_t addrVerticalScrollingOffset = config.DoubleHeight ? ((row & 0x20) << (config.DoubleWidth ? 6 : 5)) : 0;
/* The start address for tiles on this row */
uint16_t baseOffset = config.TilemapAddress + addrVerticalScrollingOffset + ((row & 0x1F) << 5);
/* The current column index (in terms of 8x8 or 16x16 tiles) */
uint16_t column = columnIndex + (hScroll >> 3);
if (!hiResMode && config.LargeTiles)
{
//For 16x16 tiles, need to return the same tile for 2 columns 8 pixel columns in a row
column >>= 1;
}
/* The tilemap address to read the tile data from */
uint16_t addr = baseOffset + (column & 0x1F) + (config.DoubleWidth ? (column & 0x20) << 5 : 0);
_layerData[layerIndex].Tiles[columnIndex].TilemapData = _vram[addr & 0x7FFF];
_layerData[layerIndex].Tiles[columnIndex].VScroll = vScroll;
}
template <bool hiResMode, uint8_t bpp, bool secondTile>
void Ppu::GetChrData(uint8_t layerIndex, uint8_t column, uint8_t plane)
{
LayerConfig& config = _state.Layers[layerIndex];
TileData& tileData = _layerData[layerIndex].Tiles[column];
uint16_t tilemapData = tileData.TilemapData;
bool largeTileWidth = hiResMode || config.LargeTiles;
bool vMirror = (tilemapData & 0x8000) != 0;
bool hMirror = (tilemapData & 0x4000) != 0;
uint16_t realY = IsDoubleHeight() ? (_oddFrame ? ((_scanline << 1) + 1) : (_scanline << 1)) : _scanline;
if (_state.MosaicEnabled && (_state.MosaicEnabled & (1 << layerIndex)))
{
//Keep the "scanline" to what it was at the start of this mosaic block
realY -= _state.MosaicSize - _mosaicScanlineCounter;
if (IsDoubleHeight())
{
realY -= _state.MosaicSize - _mosaicScanlineCounter + (_oddFrame ? 1 : 0);
}
}
bool useSecondTile = secondTile;
if (!hiResMode && config.LargeTiles)
{
//For 16x16 tiles, need to return the 2nd part of the tile every other column
useSecondTile = (((column << 3) + config.HScroll) & 0x08) == 0x08;
}
uint16_t tileIndex = tilemapData & 0x3FF;
if (largeTileWidth)
{
tileIndex = (
tileIndex +
(config.LargeTiles ? (((realY + tileData.VScroll) & 0x08) ? (vMirror ? 0 : 16) : (vMirror ? 16 : 0)) : 0) +
(largeTileWidth ? (useSecondTile ? (hMirror ? 0 : 1) : (hMirror ? 1 : 0)) : 0)
) & 0x3FF;
}
uint16_t tileStart = config.ChrAddress + tileIndex * 4 * bpp;
uint8_t baseYOffset = (realY + tileData.VScroll) & 0x07;
uint8_t yOffset = vMirror ? (7 - baseYOffset) : baseYOffset;
uint16_t pixelStart = tileStart + yOffset + (plane << 3);
tileData.ChrData[plane + (secondTile ? bpp / 2 : 0)] = _vram[pixelStart & 0x7FFF];
}
void Ppu::GetHorizontalOffsetByte(uint8_t columnIndex)
{
uint16_t columnOffset = (((columnIndex << 3) + (_state.Layers[2].HScroll & ~0x07)) >> 3) & (
_state.Layers[2].DoubleWidth ? 0x3F : 0x1F);
uint16_t rowOffset = (_state.Layers[2].VScroll >> 3) & (_state.Layers[2].DoubleHeight ? 0x3F : 0x1F);
_hOffset = _vram[(_state.Layers[2].TilemapAddress + columnOffset + (rowOffset << 5)) & 0x7FFF];
}
void Ppu::GetVerticalOffsetByte(uint8_t columnIndex)
{
uint16_t columnOffset = (((columnIndex << 3) + (_state.Layers[2].HScroll & ~0x07)) >> 3) & (
_state.Layers[2].DoubleWidth ? 0x3F : 0x1F);
uint16_t rowOffset = (_state.Layers[2].VScroll >> 3) & (_state.Layers[2].DoubleHeight ? 0x3F : 0x1F);
uint16_t tileOffset = columnOffset + (rowOffset << 5);
//The vertical offset is 0x40 bytes later - but wraps around within the tilemap based on the tilemap size (0x800 or 0x1000 bytes)
uint16_t vOffsetAddr = _state.Layers[2].TilemapAddress + ((tileOffset + 0x20) & (_state.Layers[2].DoubleHeight
? 0x7FF
: 0x3FF));
_vOffset = _vram[vOffsetAddr & 0x7FFF];
}
void Ppu::FetchTileData()
{
if (_state.ForcedVblank)
{
return;
}
if (_fetchBgStart == 0)
{
_hOffset = 0;
_vOffset = 0;
}
if (_state.BgMode == 0)
{
for (int x = _fetchBgStart; x <= _fetchBgEnd; x++)
{
switch (x & 0x07)
{
case 0: GetTilemapData<false>(3, x >> 3);
break;
case 1: GetTilemapData<false>(2, x >> 3);
break;
case 2: GetTilemapData<false>(1, x >> 3);
break;
case 3: GetTilemapData<false>(0, x >> 3);
break;
case 4: GetChrData<false, 2>(3, x >> 3, 0);
break;
case 5: GetChrData<false, 2>(2, x >> 3, 0);
break;
case 6: GetChrData<false, 2>(1, x >> 3, 0);
break;
case 7: GetChrData<false, 2>(0, x >> 3, 0);
break;
}
}
}
else if (_state.BgMode == 1)
{
for (int x = _fetchBgStart; x <= _fetchBgEnd; x++)
{
switch (x & 0x07)
{
case 0: GetTilemapData<false>(2, x >> 3);
break;
case 1: GetTilemapData<false>(1, x >> 3);
break;
case 2: GetTilemapData<false>(0, x >> 3);
break;
case 3: GetChrData<false, 2>(2, x >> 3, 0);
break;
case 4: GetChrData<false, 4>(1, x >> 3, 0);
break;
case 5: GetChrData<false, 4>(1, x >> 3, 1);
break;
case 6: GetChrData<false, 4>(0, x >> 3, 0);
break;
case 7: GetChrData<false, 4>(0, x >> 3, 1);
break;
}
}
}
else if (_state.BgMode == 2)
{
for (int x = _fetchBgStart; x <= _fetchBgEnd; x++)
{
switch (x & 0x07)
{
case 0: GetTilemapData<false>(1, x >> 3);
break;
case 1: GetTilemapData<false>(0, x >> 3);
break;
case 2: GetHorizontalOffsetByte(x >> 3);
break;
case 3: GetVerticalOffsetByte(x >> 3);
break;
case 4: GetChrData<false, 4>(1, x >> 3, 0);
break;
case 5: GetChrData<false, 4>(1, x >> 3, 1);
break;
case 6: GetChrData<false, 4>(0, x >> 3, 0);
break;
case 7: GetChrData<false, 4>(0, x >> 3, 1);
break;
}
}
}
else if (_state.BgMode == 3)
{
for (int x = _fetchBgStart; x <= _fetchBgEnd; x++)
{
switch (x & 0x07)
{
case 0: GetTilemapData<false>(1, x >> 3);
break;
case 1: GetTilemapData<false>(0, x >> 3);
break;
case 2: GetChrData<false, 4>(1, x >> 3, 0);
break;
case 3: GetChrData<false, 4>(1, x >> 3, 1);
break;
case 4: GetChrData<false, 8>(0, x >> 3, 0);
break;
case 5: GetChrData<false, 8>(0, x >> 3, 1);
break;
case 6: GetChrData<false, 8>(0, x >> 3, 2);
break;
case 7: GetChrData<false, 8>(0, x >> 3, 3);
break;
}
}
}
else if (_state.BgMode == 4)
{
for (int x = _fetchBgStart; x <= _fetchBgEnd; x++)
{
switch (x & 0x07)
{
case 0: GetTilemapData<false>(1, x >> 3);
break;
case 1: GetTilemapData<false>(0, x >> 3);
break;
case 2: GetHorizontalOffsetByte(x >> 3);
break;
case 3: GetChrData<false, 2>(1, x >> 3, 0);
break;
case 4: GetChrData<false, 8>(0, x >> 3, 0);
break;
case 5: GetChrData<false, 8>(0, x >> 3, 1);
break;
case 6: GetChrData<false, 8>(0, x >> 3, 2);
break;
case 7: GetChrData<false, 8>(0, x >> 3, 3);
break;
}
}
}
else if (_state.BgMode == 5)
{
for (int x = _fetchBgStart; x <= _fetchBgEnd; x++)
{
switch (x & 0x07)
{
case 0: GetTilemapData<true>(1, x >> 3);
break;
case 1: GetTilemapData<true>(0, x >> 3);
break;
case 2: GetChrData<true, 2>(1, x >> 3, 0);
break;
case 3: GetChrData<true, 2, true>(1, x >> 3, 0);
break;
case 4: GetChrData<true, 4>(0, x >> 3, 0);
break;
case 5: GetChrData<true, 4>(0, x >> 3, 1);
break;
case 6: GetChrData<true, 4, true>(0, x >> 3, 0);
break;
case 7: GetChrData<true, 4, true>(0, x >> 3, 1);
break;
}
}
}
else if (_state.BgMode == 6)
{
for (int x = _fetchBgStart; x <= _fetchBgEnd; x++)
{
switch (x & 0x07)
{
case 0: GetTilemapData<true>(1, x >> 3);
break;
case 1: GetTilemapData<true>(0, x >> 3);
break;
case 2: GetHorizontalOffsetByte(x >> 3);
break;
case 3: GetVerticalOffsetByte(x >> 3);
break;
case 4: GetChrData<true, 4>(0, x >> 3, 0);
break;
case 5: GetChrData<true, 4>(0, x >> 3, 1);
break;
case 6: GetChrData<true, 4, true>(0, x >> 3, 0);
break;
case 7: GetChrData<true, 4, true>(0, x >> 3, 1);
break;
}
}
}
}
bool Ppu::ProcessEndOfScanline(uint16_t hClock)
{
if (hClock >= 1364 || (hClock == 1360 && _scanline == 240 && _oddFrame && !_state.ScreenInterlace))
{
//"In non-interlace mode scanline 240 of every other frame (those with $213f.7=1) is only 1360 cycles."
if (_scanline < _vblankStartScanline)
{
RenderScanline();
if (_scanline == 0)
{
_overscanFrame = _state.OverscanMode;
_mosaicScanlineCounter = _state.MosaicEnabled ? _state.MosaicSize + 1 : 0;
//Update overclock timings once per frame
UpdateNmiScanline();
if (!_skipRender)
{
if (!_interlacedFrame)
{
_currentBuffer = _currentBuffer == _outputBuffers[0] ? _outputBuffers[1] : _outputBuffers[0];
}
//If we're not skipping this frame, reset the high resolution/interlace flags
_useHighResOutput = IsDoubleWidth() || _state.ScreenInterlace;
_interlacedFrame = _state.ScreenInterlace;
}
}
if (_mosaicScanlineCounter)
{
_mosaicScanlineCounter--;
if (_state.MosaicEnabled && !_mosaicScanlineCounter)
{
_mosaicScanlineCounter = _state.MosaicSize;
}
}
_drawStartX = 0;
_drawEndX = 0;
_fetchBgStart = 0;
_fetchBgEnd = 0;
_fetchSpriteStart = 0;
_fetchSpriteEnd = 0;
_spriteEvalStart = 0;
_spriteEvalEnd = 0;
_spriteFetchingDone = false;
memset(_hasSpritePriority, 0, sizeof(_hasSpritePriority));
memcpy(_spritePriority, _spritePriorityCopy, sizeof(_spritePriority));
for (int i = 0; i < 255; i++)
{
if (_spritePriority[i] < 4)
{
_hasSpritePriority[_spritePriority[i]] = true;
}
}
memcpy(_spritePalette, _spritePaletteCopy, sizeof(_spritePalette));
memcpy(_spriteColors, _spriteColorsCopy, sizeof(_spriteColors));
memset(_spriteIndexes, 0xFF, sizeof(_spriteIndexes));
memset(_mainScreenFlags, 0, sizeof(_mainScreenFlags));
memset(_subScreenPriority, 0, sizeof(_subScreenPriority));
}
_scanline++;
if (_scanline == _nmiScanline)
{
ProcessLocationLatchRequest();
_latchRequest = false;
//Reset OAM address at the start of vblank?
if (!_state.ForcedVblank)
{
//TODO, the timing of this may be slightly off? should happen at H=10 based on anomie's docs
_internalOamAddress = (_state.OamRamAddress << 1);
}
VideoConfig cfg = _settings->GetVideoConfig();
_configVisibleLayers = (cfg.HideBgLayer0 ? 0 : 1) | (cfg.HideBgLayer1 ? 0 : 2) | (cfg.HideBgLayer2 ? 0 : 4) | (
cfg.HideBgLayer3 ? 0 : 8) | (cfg.HideSprites ? 0 : 16);
_console->ProcessEvent(EventType::EndFrame);
_frameCount++;
_spc->ProcessEndFrame();
_regs->SetNmiFlag(true);
SendFrame();
_console->ProcessEndOfFrame();
}
else if (_scanline >= _vblankEndScanline + 1)
{
//"Frames are 262 scanlines in non-interlace mode, while in interlace mode frames with $213f.7=0 are 263 scanlines"
_oddFrame ^= 1;
_regs->SetNmiFlag(false);
_scanline = 0;
_rangeOver = false;
_timeOver = false;
_console->ProcessEvent(EventType::StartFrame);
_skipRender = (
!_settings->GetVideoConfig().DisableFrameSkipping &&
!_console->GetRewindManager()->IsRewinding() &&
!_console->GetVideoRenderer()->IsRecording() &&
(_settings->GetEmulationSpeed() == 0 || _settings->GetEmulationSpeed() > 150) &&
_frameSkipTimer.GetElapsedMS() < 10
);
if (_console->IsRunAheadFrame())
{
_skipRender = true;
}
//Ensure the SPC is re-enabled for the next frame
_spc->SetSpcState(true);
}
UpdateSpcState();
return true;
}
return false;
}
void Ppu::UpdateSpcState()
{
//When using overclocking, turn off the SPC during the extra scanlines
if (_overclockEnabled && _scanline > _vblankStartScanline)
{
if (_scanline > _adjustedVblankEndScanline)
{
//Disable APU for extra lines after NMI
_spc->SetSpcState(false);
}
else if (_scanline >= _vblankStartScanline && _scanline < _nmiScanline)
{
//Disable APU for extra lines before NMI
_spc->SetSpcState(false);
}
else
{
_spc->SetSpcState(true);
}
}
}
void Ppu::UpdateNmiScanline()
{
EmulationConfig cfg = _settings->GetEmulationConfig();
if (_console->GetRegion() == ConsoleRegion::Ntsc)
{
if (!_state.ScreenInterlace || _oddFrame)
{
_baseVblankEndScanline = 261;
}
else
{
_baseVblankEndScanline = 262;
}
}
else
{
if (!_state.ScreenInterlace || _oddFrame)
{
_baseVblankEndScanline = 311;
}
else
{
_baseVblankEndScanline = 312;
}
}
_overclockEnabled = cfg.PpuExtraScanlinesBeforeNmi > 0 || cfg.PpuExtraScanlinesAfterNmi > 0;
_adjustedVblankEndScanline = _baseVblankEndScanline + cfg.PpuExtraScanlinesBeforeNmi;
_vblankEndScanline = _baseVblankEndScanline + cfg.PpuExtraScanlinesAfterNmi + cfg.PpuExtraScanlinesBeforeNmi;
_vblankStartScanline = _state.OverscanMode ? 240 : 225;
_nmiScanline = _vblankStartScanline + cfg.PpuExtraScanlinesBeforeNmi;
}
uint16_t Ppu::GetRealScanline()
{
if (!_overclockEnabled)
{
return _scanline;
}
if (_scanline > _vblankStartScanline && _scanline <= _nmiScanline)
{
//Pretend to be just before vblank until extra scanlines are over
return _vblankStartScanline - 1;
}
else if (_scanline > _nmiScanline)
{
if (_scanline > _adjustedVblankEndScanline)
{
//Pretend to be at the end of vblank until extra scanlines are over
return _baseVblankEndScanline;
}
else
{
//Number the regular scanlines as they would normally be
return _scanline - _nmiScanline + _vblankStartScanline;
}
}
return _scanline;
}
uint16_t Ppu::GetVblankEndScanline()
{
return _vblankEndScanline;
}
uint16_t Ppu::GetLastScanline()
{
return _baseVblankEndScanline;
}
void Ppu::EvaluateNextLineSprites()
{
if (_spriteEvalStart == 0)
{
_spriteCount = 0;
_oamEvaluationIndex = _state.EnableOamPriority ? ((_internalOamAddress & 0x1FC) >> 2) : 0;
}
if (_state.ForcedVblank)
{
return;
}
for (int i = _spriteEvalStart; i <= _spriteEvalEnd; i++)
{
if (!(i & 0x01))
{
//First cycle, read X & Y and high oam byte
FetchSpritePosition(_oamEvaluationIndex << 2);
}
else
{
//Second cycle: Check if sprite is in range, if so, keep its index
if (_currentSprite.IsVisible(_scanline, _state.ObjInterlace))
{
if (_spriteCount < 32)
{
_spriteIndexes[_spriteCount] = _oamEvaluationIndex;
_spriteCount++;
}
else
{
_rangeOver = true;
}
}
_oamEvaluationIndex = (_oamEvaluationIndex + 1) & 0x7F;
}
}
}
void Ppu::FetchSpriteData()
{
//From H=272 to 339, fetch a single word of CHR data on every cycle (for up to 34 sprites)
if (_fetchSpriteStart == 0)
{
memset(_spritePriorityCopy, 0xFF, sizeof(_spritePriorityCopy));
_spriteTileCount = 0;
_currentSprite.Index = 0xFF;
if (_spriteCount == 0)
{
_spriteFetchingDone = true;
return;
}
_oamTimeIndex = _spriteIndexes[_spriteCount - 1];
}
for (int x = _fetchSpriteStart; x <= _fetchSpriteEnd; x++)
{
if (x >= 2)
{
//Fetch the tile using the OAM data loaded on the past 2 cycles, before overwriting it in FetchSpriteAttributes below
if (!_state.ForcedVblank)
{
FetchSpriteTile(x & 0x01);
}
if ((x & 1) && _spriteCount == 0 && _currentSprite.ColumnOffset == 0)
{
//End this step
_spriteFetchingDone = true;
break;
}
}
if (_spriteCount > 0)
{
if (x & 1)
{
FetchSpriteAttributes((_oamTimeIndex << 2) | 0x02);
if (_spriteCount > 0)
{
_oamTimeIndex = _spriteIndexes[_spriteCount - 1];
}
}
else
{
FetchSpritePosition(_oamTimeIndex << 2);
}
}
}
}
void Ppu::FetchSpritePosition(uint16_t oamAddress)
{
uint8_t highTableOffset = oamAddress >> 4;
uint8_t shift = ((oamAddress >> 1) & 0x06);
uint8_t highTableValue = _oamRam[0x200 | highTableOffset] >> shift;
uint8_t largeSprite = (highTableValue & 0x02) >> 1;
uint16_t oamValue = _oamRam[oamAddress] | (_oamRam[oamAddress + 1] << 8);
uint16_t sign = (highTableValue & 0x01) << 8;
uint8_t spriteIndex = oamAddress >> 2;
_currentSprite.X = (int16_t)((sign | (oamValue & 0xFF)) << 7) >> 7;
_currentSprite.Y = (oamValue >> 8);
_currentSprite.Width = _oamSizes[_state.OamMode][largeSprite][0] << 3;
if (spriteIndex != _currentSprite.Index)
{
_currentSprite.Index = oamAddress >> 2;
_currentSprite.ColumnOffset = (_currentSprite.Width / 8);
if (_currentSprite.X <= -8 && _currentSprite.X != -256)
{
//Skip the first tiles of the sprite (because the tiles are hidden to the left of the screen)
_currentSprite.ColumnOffset += _currentSprite.X / 8;
}
}
uint8_t height = _oamSizes[_state.OamMode][largeSprite][1] << 3;
_currentSprite.Height = height;
}
void Ppu::FetchSpriteAttributes(uint16_t oamAddress)
{
_spriteTileCount++;
if (_spriteTileCount > 34)
{
_timeOver = true;
}
uint8_t flags = _oamRam[oamAddress + 1];
bool useSecondTable = (flags & 0x01) != 0;
_currentSprite.Palette = (flags >> 1) & 0x07;
_currentSprite.Priority = (flags >> 4) & 0x03;
_currentSprite.HorizontalMirror = (flags & 0x40) != 0;
_currentSprite.ColumnOffset--;
uint8_t yOffset;
int rowOffset;
int yGap = (_scanline - _currentSprite.Y);
if (_state.ObjInterlace)
{
yGap <<= 1;
yGap |= _oddFrame;
}
bool verticalMirror = (flags & 0x80) != 0;
if (verticalMirror)
{
yOffset = (_currentSprite.Height - 1 - yGap) & 0x07;
rowOffset = (_currentSprite.Height - 1 - yGap) >> 3;
}
else
{
yOffset = yGap & 0x07;
rowOffset = yGap >> 3;
}
uint8_t columnCount = (_currentSprite.Width / 8);
uint8_t tileRow = (_oamRam[oamAddress] & 0xF0) >> 4;
uint8_t tileColumn = _oamRam[oamAddress] & 0x0F;
uint8_t row = (tileRow + rowOffset) & 0x0F;
uint8_t columnOffset = _currentSprite.HorizontalMirror
? _currentSprite.ColumnOffset
: (columnCount - _currentSprite.ColumnOffset - 1);
uint8_t tileIndex = (row << 4) | ((tileColumn + columnOffset) & 0x0F);
uint16_t tileStart = (_state.OamBaseAddress + (tileIndex << 4) + (useSecondTable ? _state.OamAddressOffset : 0));
_currentSprite.FetchAddress = (tileStart + yOffset) & 0x7FFF;
int16_t x = _currentSprite.X == -256 ? 0 : _currentSprite.X;
int16_t endTileX = x + ((columnCount - _currentSprite.ColumnOffset - 1) << 3) + 8;
_currentSprite.DrawX = _currentSprite.X + ((columnCount - _currentSprite.ColumnOffset - 1) << 3);
if (_currentSprite.ColumnOffset == 0 || endTileX >= 256)
{
//Last tile of the sprite, or skip the remaining tiles (because the tiles are hidden to the right of the screen)
_spriteCount--;
_currentSprite.ColumnOffset = 0;
}
}
void Ppu::FetchSpriteTile(bool secondCycle)
{
//The timing for the fetches should be (mostly) accurate (H=272 to 339)
uint16_t chrData = _vram[_currentSprite.FetchAddress];
_currentSprite.ChrData[secondCycle] = chrData;
if (!secondCycle)
{
_currentSprite.FetchAddress = (_currentSprite.FetchAddress + 8) & 0x7FFF;
}
else
{
int16_t xPos = _currentSprite.DrawX;
for (int x = 0; x < 8; x++)
{
if (xPos + x < 0 || xPos + x > 255)
{
continue;
}
uint8_t xOffset = _currentSprite.HorizontalMirror ? ((7 - x) & 0x07) : x;
uint8_t color = GetTilePixelColor<4>(_currentSprite.ChrData, 7 - xOffset);
if (color != 0)
{
_spriteColorsCopy[xPos + x] = color;
_spritePriorityCopy[xPos + x] = _currentSprite.Priority;
_spritePaletteCopy[xPos + x] = _currentSprite.Palette;
}
}
}
}
void Ppu::RenderMode0()
{
constexpr uint8_t spritePriorities[4] = {3, 6, 9, 12};
RenderSprites(spritePriorities);
RenderTilemap<0, 2, 8, 11, 0>();
RenderTilemap<1, 2, 7, 10, 32>();
RenderTilemap<2, 2, 2, 5, 64>();
RenderTilemap<3, 2, 1, 4, 96>();
}
void Ppu::RenderMode1()
{
constexpr uint8_t spritePriorities[4] = {2, 4, 7, 10};
RenderSprites(spritePriorities);
RenderTilemap<0, 4, 6, 9>();
RenderTilemap<1, 4, 5, 8>();
if (!_state.Mode1Bg3Priority)
{
RenderTilemap<2, 2, 1, 3>();
}
else
{
RenderTilemap<2, 2, 1, 11>();
}
}
void Ppu::RenderMode2()
{
constexpr uint8_t spritePriorities[4] = {2, 4, 6, 8};
RenderSprites(spritePriorities);
RenderTilemap<0, 4, 3, 7>();
RenderTilemap<1, 4, 1, 5>();
}
void Ppu::RenderMode3()
{
constexpr uint8_t spritePriorities[4] = {2, 4, 6, 8};
RenderSprites(spritePriorities);
RenderTilemap<0, 8, 3, 7>();
RenderTilemap<1, 4, 1, 5>();
}
void Ppu::RenderMode4()
{
constexpr uint8_t spritePriorities[4] = {2, 4, 6, 8};
RenderSprites(spritePriorities);
RenderTilemap<0, 8, 3, 7>();
RenderTilemap<1, 2, 1, 5>();
}
void Ppu::RenderMode5()
{
constexpr uint8_t spritePriorities[4] = {2, 4, 6, 8};
RenderSprites(spritePriorities);
RenderTilemap<0, 4, 3, 7>();
RenderTilemap<1, 2, 1, 5>();
}
void Ppu::RenderMode6()
{
constexpr uint8_t spritePriorities[4] = {2, 3, 4, 6};
RenderSprites(spritePriorities);
RenderTilemap<0, 4, 1, 5>();
}
void Ppu::RenderMode7()
{
constexpr uint8_t spritePriorities[4] = {2, 4, 6, 7};
RenderSprites(spritePriorities);
RenderTilemapMode7<0, 3, 3>();
if (_state.ExtBgEnabled)
{
RenderTilemapMode7<1, 1, 5>();
}
}
void Ppu::RenderScanline()
{
int32_t hPos = GetCycle();
if (hPos <= 255 || _spriteEvalEnd < 255)
{
_spriteEvalEnd = std::min(hPos, 255);
if (_spriteEvalStart <= _spriteEvalEnd)
{
EvaluateNextLineSprites();
}
_spriteEvalStart = _spriteEvalEnd + 1;
}
if (!_skipRender && (hPos <= 263 || _fetchBgEnd < 263))
{
//Fetch tilemap and tile CHR data, as needed, between H=0 and H=263
_fetchBgEnd = std::min(hPos, 263);
if (_fetchBgStart <= _fetchBgEnd)
{
FetchTileData();
}
_fetchBgStart = _fetchBgEnd + 1;
}
//Render the scanline
if (!_skipRender && _drawStartX <= 255 && hPos > 22 && _scanline > 0)
{
_drawEndX = std::min(hPos - 22, 255);
if (_state.ForcedVblank)
{
//Forced blank, output black
memset(_mainScreenBuffer + _drawStartX, 0, (_drawEndX - _drawStartX + 1) * 2);
memset(_subScreenBuffer + _drawStartX, 0, (_drawEndX - _drawStartX + 1) * 2);
}
else
{
switch (_state.BgMode)
{
case 0: RenderMode0();
break;
case 1: RenderMode1();
break;
case 2: RenderMode2();
break;
case 3: RenderMode3();
break;
case 4: RenderMode4();
break;
case 5: RenderMode5();
break;
case 6: RenderMode6();
break;
case 7: RenderMode7();
break;
}
RenderBgColor();
}
ApplyColorMath();
ApplyBrightness<true>();
ApplyHiResMode();
_drawStartX = _drawEndX + 1;
}
if (hPos >= 270 && !_spriteFetchingDone)
{
//Fetch sprite data from OAM and calculated which CHR data needs to be loaded (between H=270 and H=337)
//Fetch sprite CHR data, as needed, between H=272 and H=339
_fetchSpriteEnd = std::min(hPos - 270, 69);
if (_fetchSpriteStart <= _fetchSpriteEnd)
{
FetchSpriteData();
}
_fetchSpriteStart = _fetchSpriteEnd + 1;
}
}
void Ppu::RenderBgColor()
{
uint8_t pixelFlags = (_state.ColorMathEnabled & 0x20) ? PixelFlags::AllowColorMath : 0;
for (int x = _drawStartX; x <= _drawEndX; x++)
{
if ((_mainScreenFlags[x] & 0x0F) == 0)
{
_mainScreenBuffer[x] = _cgram[0];
_mainScreenFlags[x] = pixelFlags;
}
if (_subScreenPriority[x] == 0)
{
_subScreenBuffer[x] = _cgram[0];
}
}
}
void Ppu::RenderSprites(const uint8_t priority[4])
{
if (!IsRenderRequired(Ppu::SpriteLayerIndex))
{
return;
}
bool drawMain = (bool)(((_state.MainScreenLayers & _configVisibleLayers) >> Ppu::SpriteLayerIndex) & 0x01);
bool drawSub = (bool)(((_state.SubScreenLayers & _configVisibleLayers) >> Ppu::SpriteLayerIndex) & 0x01);
uint8_t mainWindowCount = 0;
uint8_t subWindowCount = 0;
if (_state.WindowMaskMain[Ppu::SpriteLayerIndex])
{
mainWindowCount = (uint8_t)_state.Window[0].ActiveLayers[Ppu::SpriteLayerIndex] + (uint8_t)_state.Window[1].
ActiveLayers[Ppu::SpriteLayerIndex];
}
if (_state.WindowMaskSub[Ppu::SpriteLayerIndex])
{
subWindowCount = (uint8_t)_state.Window[0].ActiveLayers[Ppu::SpriteLayerIndex] + (uint8_t)_state.Window[1].
ActiveLayers[Ppu::SpriteLayerIndex];
}
for (int x = _drawStartX; x <= _drawEndX; x++)
{
if (_spritePriority[x] <= 3)
{
uint8_t spritePrio = priority[_spritePriority[x]];
if (drawMain && ((_mainScreenFlags[x] & 0x0F) < spritePrio) && !ProcessMaskWindow<Ppu::SpriteLayerIndex>(
mainWindowCount, x))
{
uint16_t paletteRamOffset = 128 + (_spritePalette[x] << 4) + _spriteColors[x];
_mainScreenBuffer[x] = _cgram[paletteRamOffset];
_mainScreenFlags[x] = spritePrio | (((_state.ColorMathEnabled & 0x10) && _spritePalette[x] > 3)
? PixelFlags::AllowColorMath
: 0);
}
if (drawSub && (_subScreenPriority[x] < spritePrio) && !ProcessMaskWindow<Ppu::SpriteLayerIndex>(
subWindowCount, x))
{
uint16_t paletteRamOffset = 128 + (_spritePalette[x] << 4) + _spriteColors[x];
_subScreenBuffer[x] = _cgram[paletteRamOffset];
_subScreenPriority[x] = spritePrio;
}
}
}
}
template <uint8_t layerIndex, uint8_t bpp, uint8_t normalPriority, uint8_t highPriority, uint16_t basePaletteOffset,
bool hiResMode, bool applyMosaic, bool directColorMode>
void Ppu::RenderTilemap()
{
bool drawMain = (bool)(((_state.MainScreenLayers & _configVisibleLayers) >> layerIndex) & 0x01);
bool drawSub = (bool)(((_state.SubScreenLayers & _configVisibleLayers) >> layerIndex) & 0x01);
uint8_t mainWindowCount = _state.WindowMaskMain[layerIndex]
? (uint8_t)_state.Window[0].ActiveLayers[layerIndex] + (uint8_t)_state.Window[1].
ActiveLayers[layerIndex]
: 0;
uint8_t subWindowCount = _state.WindowMaskSub[layerIndex]
? (uint8_t)_state.Window[0].ActiveLayers[layerIndex] + (uint8_t)_state.Window[1].
ActiveLayers[layerIndex]
: 0;
uint16_t hScrollOriginal = _state.Layers[layerIndex].HScroll;
uint16_t hScroll = hiResMode ? (hScrollOriginal << 1) : hScrollOriginal;
TileData* tileData = _layerData[layerIndex].Tiles;
uint8_t mosaicCounter = applyMosaic ? _state.MosaicSize - (_drawStartX % _state.MosaicSize) : 0;
uint8_t lookupIndex;
uint8_t chrDataOffset;
uint8_t hiresSubColor;
uint8_t pixelFlags = (((_state.ColorMathEnabled >> layerIndex) & 0x01) ? PixelFlags::AllowColorMath : 0);
for (int x = _drawStartX; x <= _drawEndX; x++)
{
if (hiResMode)
{
lookupIndex = (x + (hScrollOriginal & 0x07)) >> 2;
chrDataOffset = (lookupIndex & 0x01) * bpp / 2;
lookupIndex >>= 1;
}
else
{
lookupIndex = (x + (hScrollOriginal & 0x07)) >> 3;
}
uint16_t tilemapData = tileData[lookupIndex].TilemapData;
uint16_t* chrData = tileData[lookupIndex].ChrData;
bool hMirror = (tilemapData & 0x4000) != 0;
uint8_t color;
if (hiResMode)
{
uint8_t xOffset = ((x << 1) + 1 + hScroll) & 0x07;
uint8_t shift = hMirror ? xOffset : (7 - xOffset);
color = GetTilePixelColor<bpp>(chrData + chrDataOffset, shift);
xOffset = ((x << 1) + hScroll) & 0x07;
shift = hMirror ? xOffset : (7 - xOffset);
hiresSubColor = GetTilePixelColor<bpp>(chrData + chrDataOffset, shift);
}
else
{
uint8_t xOffset = (x + hScroll) & 0x07;
uint8_t shift = hMirror ? xOffset : (7 - xOffset);
color = GetTilePixelColor<bpp>(chrData, shift);
}
uint8_t paletteIndex = (tilemapData >> 10) & 0x07;
uint8_t priority = (tilemapData & 0x2000) ? highPriority : normalPriority;
if (applyMosaic)
{
if (mosaicCounter == _state.MosaicSize)
{
mosaicCounter = 1;
if (hiResMode)
{
color = hiresSubColor;
}
_mosaicColor[layerIndex] = (paletteIndex << 8) | color;
_mosaicPriority[layerIndex] = priority;
}
else
{
mosaicCounter++;
color = _mosaicColor[layerIndex] & 0xFF;
paletteIndex = _mosaicColor[layerIndex] >> 8;
priority = _mosaicPriority[layerIndex];
if (hiResMode)
{
hiresSubColor = color;
}
}
}
if (color > 0)
{
uint16_t rgbColor = GetRgbColor<bpp, directColorMode, basePaletteOffset>(paletteIndex, color);
if (drawMain && (_mainScreenFlags[x] & 0x0F) < priority && !ProcessMaskWindow<layerIndex>(mainWindowCount, x))
{
DrawMainPixel(x, rgbColor, priority | pixelFlags);
}
if (!hiResMode && drawSub && _subScreenPriority[x] < priority && !ProcessMaskWindow<layerIndex>(
subWindowCount, x))
{
DrawSubPixel(x, rgbColor, priority);
}
}
if (hiResMode)
{
if (hiresSubColor > 0 && drawSub && _subScreenPriority[x] < priority && !ProcessMaskWindow<layerIndex>(
subWindowCount, x))
{
uint16_t hiresSubRgbColor = GetRgbColor<bpp, directColorMode, basePaletteOffset>(
paletteIndex, hiresSubColor);
DrawSubPixel(x, hiresSubRgbColor, priority);
}
}
}
}
template <uint8_t bpp, bool directColorMode, uint8_t basePaletteOffset>
uint16_t Ppu::GetRgbColor(uint8_t paletteIndex, uint8_t colorIndex)
{
if (bpp == 8 && directColorMode)
{
return (
((((colorIndex & 0x07) << 1) | (paletteIndex & 0x01)) << 1) |
(((colorIndex & 0x38) | ((paletteIndex & 0x02) << 1)) << 4) |
(((colorIndex & 0xC0) | ((paletteIndex & 0x04) << 3)) << 7)
);
}
else if (bpp == 8)
{
//Ignore palette bits for 256-color layers
return _cgram[basePaletteOffset + colorIndex];
}
else
{
return _cgram[basePaletteOffset + paletteIndex * (1 << bpp) + colorIndex];
}
}
bool Ppu::IsRenderRequired(uint8_t layerIndex)
{
if (((_state.MainScreenLayers & _configVisibleLayers) >> layerIndex) & 0x01)
{
return true;
}
if (((_state.SubScreenLayers & _configVisibleLayers) >> layerIndex) & 0x01)
{
return true;
}
return false;
}
template <uint8_t bpp>
uint8_t Ppu::GetTilePixelColor(const uint16_t chrData[4], const uint8_t shift)
{
uint8_t color;
if (bpp == 2)
{
color = (chrData[0] >> shift) & 0x01;
color |= (chrData[0] >> (7 + shift)) & 0x02;
}
else if (bpp == 4)
{
color = (chrData[0] >> shift) & 0x01;
color |= (chrData[0] >> (7 + shift)) & 0x02;
color |= ((chrData[1] >> shift) & 0x01) << 2;
color |= ((chrData[1] >> (7 + shift)) & 0x02) << 2;
}
else if (bpp == 8)
{
color = (chrData[0] >> shift) & 0x01;
color |= (chrData[0] >> (7 + shift)) & 0x02;
color |= ((chrData[1] >> shift) & 0x01) << 2;
color |= ((chrData[1] >> (7 + shift)) & 0x02) << 2;
color |= ((chrData[2] >> shift) & 0x01) << 4;
color |= ((chrData[2] >> (7 + shift)) & 0x02) << 4;
color |= ((chrData[3] >> shift) & 0x01) << 6;
color |= ((chrData[3] >> (7 + shift)) & 0x02) << 6;
}
else
{
throw std::runtime_error("unsupported bpp");
}
return color;
}
template <uint8_t layerIndex, uint8_t normalPriority, uint8_t highPriority, bool applyMosaic, bool directColorMode>
void Ppu::RenderTilemapMode7()
{
uint8_t mainWindowCount = _state.WindowMaskMain[layerIndex]
? (uint8_t)_state.Window[0].ActiveLayers[layerIndex] + (uint8_t)_state.Window[1].
ActiveLayers[layerIndex]
: 0;
uint8_t subWindowCount = _state.WindowMaskSub[layerIndex]
? (uint8_t)_state.Window[0].ActiveLayers[layerIndex] + (uint8_t)_state.Window[1].
ActiveLayers[layerIndex]
: 0;
bool drawMain = (bool)(((_state.MainScreenLayers & _configVisibleLayers) >> layerIndex) & 0x01);
bool drawSub = (bool)(((_state.SubScreenLayers & _configVisibleLayers) >> layerIndex) & 0x01);
auto clip = [](int32_t val) { return (val & 0x2000) ? (val | ~0x3ff) : (val & 0x3ff); };
if (_drawStartX == 0)
{
//Keep the same scroll offsets for the entire scanline
_state.Mode7.HScrollLatch = _state.Mode7.HScroll;
_state.Mode7.VScrollLatch = _state.Mode7.VScroll;
}
int32_t hScroll = ((int32_t)_state.Mode7.HScrollLatch << 19) >> 19;
int32_t vScroll = ((int32_t)_state.Mode7.VScrollLatch << 19) >> 19;
int32_t centerX = ((int32_t)_state.Mode7.CenterX << 19) >> 19;
int32_t centerY = ((int32_t)_state.Mode7.CenterY << 19) >> 19;
uint16_t realY = _state.Mode7.VerticalMirroring ? (255 - _scanline) : _scanline;
if (applyMosaic)
{
//Keep the "scanline" to what it was at the start of this mosaic block
realY -= _state.MosaicSize - _mosaicScanlineCounter;
}
uint8_t mosaicCounter = applyMosaic ? _state.MosaicSize - (_drawStartX % _state.MosaicSize) : 0;
int32_t xValue = (
((_state.Mode7.Matrix[0] * clip(hScroll - centerX)) & ~63) +
((_state.Mode7.Matrix[1] * realY) & ~63) +
((_state.Mode7.Matrix[1] * clip(vScroll - centerY)) & ~63) +
(centerX << 8)
);
int32_t yValue = (
((_state.Mode7.Matrix[2] * clip(hScroll - centerX)) & ~63) +
((_state.Mode7.Matrix[3] * realY) & ~63) +
((_state.Mode7.Matrix[3] * clip(vScroll - centerY)) & ~63) +
(centerY << 8)
);
int16_t xStep = _state.Mode7.Matrix[0];
int16_t yStep = _state.Mode7.Matrix[2];
if (_state.Mode7.HorizontalMirroring)
{
//Calculate the value at the end of the scanline, and then start going backwards
xValue += xStep * _drawEndX;
yValue += yStep * _drawEndX;
xStep = -xStep;
yStep = -yStep;
}
xValue += xStep * _drawStartX;
yValue += yStep * _drawStartX;
uint8_t pixelFlags = ((_state.ColorMathEnabled >> layerIndex) & 0x01) ? PixelFlags::AllowColorMath : 0;
for (int x = _drawStartX; x <= _drawEndX; x++)
{
int32_t xOffset = xValue >> 8;
int32_t yOffset = yValue >> 8;
xValue += xStep;
yValue += yStep;
uint8_t tileIndex;
if (!_state.Mode7.LargeMap)
{
yOffset &= 0x3FF;
xOffset &= 0x3FF;
tileIndex = (uint8_t)_vram[((yOffset & ~0x07) << 4) | (xOffset >> 3)];
}
else
{
if (yOffset < 0 || yOffset > 0x3FF || xOffset < 0 || xOffset > 0x3FF)
{
if (_state.Mode7.FillWithTile0)
{
tileIndex = 0;
}
else
{
//Draw nothing for this pixel, we're outside the map
continue;
}
}
else
{
tileIndex = (uint8_t)_vram[((yOffset & ~0x07) << 4) | (xOffset >> 3)];
}
}
uint16_t colorIndex;
uint8_t priority;
if (layerIndex == 1)
{
uint8_t color = _vram[((tileIndex << 6) + ((yOffset & 0x07) << 3) + (xOffset & 0x07))] >> 8;
priority = (color & 0x80) ? highPriority : normalPriority;
colorIndex = (color & 0x7F);
}
else
{
priority = normalPriority;
colorIndex = _vram[((tileIndex << 6) + ((yOffset & 0x07) << 3) + (xOffset & 0x07))] >> 8;
}
if (applyMosaic)
{
if (mosaicCounter == _state.MosaicSize)
{
mosaicCounter = 1;
_mosaicColor[layerIndex] = colorIndex;
_mosaicPriority[layerIndex] = priority;
}
else
{
mosaicCounter++;
colorIndex = _mosaicColor[layerIndex];
priority = _mosaicPriority[layerIndex];
}
}
if (colorIndex > 0)
{
uint16_t paletteColor;
if (directColorMode)
{
paletteColor = ((colorIndex & 0x07) << 2) | ((colorIndex & 0x38) << 4) | ((colorIndex & 0xC0) << 7);
}
else
{
paletteColor = _cgram[colorIndex];
}
if (drawMain && (_mainScreenFlags[x] & 0x0F) < priority && !ProcessMaskWindow<layerIndex>(mainWindowCount, x))
{
DrawMainPixel(x, paletteColor, priority | pixelFlags);
}
if (drawSub && _subScreenPriority[x] < priority && !ProcessMaskWindow<layerIndex>(subWindowCount, x))
{
DrawSubPixel(x, paletteColor, priority);
}
}
}
}
void Ppu::DrawMainPixel(uint8_t x, uint16_t color, uint8_t flags)
{
_mainScreenBuffer[x] = color;
_mainScreenFlags[x] = flags;
}
void Ppu::DrawSubPixel(uint8_t x, uint16_t color, uint8_t priority)
{
_subScreenBuffer[x] = color;
_subScreenPriority[x] = priority;
}
void Ppu::ApplyColorMath()
{
uint8_t activeWindowCount = (uint8_t)_state.Window[0].ActiveLayers[Ppu::ColorWindowIndex] + (uint8_t)_state.Window[1]
.ActiveLayers[Ppu::ColorWindowIndex];
bool hiResMode = _state.HiResMode || _state.BgMode == 5 || _state.BgMode == 6;
if (hiResMode)
{
for (int x = _drawStartX; x <= _drawEndX; x++)
{
bool isInsideWindow = ProcessMaskWindow<Ppu::ColorWindowIndex>(activeWindowCount, x);
//Keep original subscreen color, which is used to apply color math to the main screen after
uint16_t subPixel = _subScreenBuffer[x];
//Apply the color math based on the previous main pixel
uint16_t prevMainPixel = x > 0 ? _mainScreenBuffer[x - 1] : 0;
int prevX = x > 0 ? x - 1 : 0;
ApplyColorMathToPixel(_subScreenBuffer[x], prevMainPixel, prevX, isInsideWindow);
ApplyColorMathToPixel(_mainScreenBuffer[x], subPixel, x, isInsideWindow);
}
}
else
{
for (int x = _drawStartX; x <= _drawEndX; x++)
{
bool isInsideWindow = ProcessMaskWindow<Ppu::ColorWindowIndex>(activeWindowCount, x);
ApplyColorMathToPixel(_mainScreenBuffer[x], _subScreenBuffer[x], x, isInsideWindow);
}
}
}
void Ppu::ApplyColorMathToPixel(uint16_t& pixelA, uint16_t pixelB, int x, bool isInsideWindow)
{
uint8_t halfShift = (uint8_t)_state.ColorMathHalveResult;
//Set color to black as needed based on clip mode
switch (_state.ColorMathClipMode)
{
default:
case ColorWindowMode::Never: break;
case ColorWindowMode::OutsideWindow:
if (!isInsideWindow)
{
pixelA = 0;
halfShift = 0;
}
break;
case ColorWindowMode::InsideWindow:
if (isInsideWindow)
{
pixelA = 0;
halfShift = 0;
}
break;
case ColorWindowMode::Always: pixelA = 0;
break;
}
if (!(_mainScreenFlags[x] & PixelFlags::AllowColorMath))
{
//Color math doesn't apply to this pixel
return;
}
//Prevent color math as needed based on mode
switch (_state.ColorMathPreventMode)
{
default:
case ColorWindowMode::Never: break;
case ColorWindowMode::OutsideWindow:
if (!isInsideWindow)
{
return;
}
break;
case ColorWindowMode::InsideWindow:
if (isInsideWindow)
{
return;
}
break;
case ColorWindowMode::Always: return;
}
uint16_t otherPixel;
if (_state.ColorMathAddSubscreen)
{
if (_subScreenPriority[x] > 0)
{
otherPixel = pixelB;
}
else
{
//there's nothing in the subscreen at this pixel, use the fixed color and disable halve operation
otherPixel = _state.FixedColor;
halfShift = 0;
}
}
else
{
otherPixel = _state.FixedColor;
}
constexpr unsigned int mask = 0x1F;
if (_state.ColorMathSubstractMode)
{
uint16_t r = std::max((int)((pixelA & mask) - (otherPixel & mask)), 0) >> halfShift;
uint16_t g = std::max((int)(((pixelA >> 5U) & mask) - ((otherPixel >> 5U) & mask)), 0) >> halfShift;
uint16_t b = std::max((int)(((pixelA >> 10U) & mask) - ((otherPixel >> 10U) & mask)), 0) >> halfShift;
pixelA = r | (g << 5U) | (b << 10U);
}
else
{
uint16_t r = std::min(((pixelA & mask) + (otherPixel & mask)) >> halfShift, mask);
uint16_t g = std::min((((pixelA >> 5U) & mask) + ((otherPixel >> 5U) & mask)) >> halfShift, mask);
uint16_t b = std::min((((pixelA >> 10U) & mask) + ((otherPixel >> 10U) & mask)) >> halfShift, mask);
pixelA = r | (g << 5U) | (b << 10U);
}
}
template <bool forMainScreen>
void Ppu::ApplyBrightness()
{
if (_state.ScreenBrightness != 15)
{
for (int x = _drawStartX; x <= _drawEndX; x++)
{
uint16_t& pixel = (forMainScreen ? _mainScreenBuffer : _subScreenBuffer)[x];
uint16_t r = (pixel & 0x1F) * _state.ScreenBrightness / 15;
uint16_t g = ((pixel >> 5) & 0x1F) * _state.ScreenBrightness / 15;
uint16_t b = ((pixel >> 10) & 0x1F) * _state.ScreenBrightness / 15;
pixel = r | (g << 5) | (b << 10);
}
}
}
void Ppu::ConvertToHiRes()
{
bool useHighResOutput = _useHighResOutput || IsDoubleWidth() || _state.ScreenInterlace;
if (!useHighResOutput || _useHighResOutput == useHighResOutput || _scanline >= _vblankStartScanline || _scanline == 0
)
{
return;
}
//Convert standard res picture to high resolution when the PPU starts drawing in high res mid frame
_useHighResOutput = useHighResOutput;
uint16_t scanline = _overscanFrame ? (_scanline - 1) : (_scanline + 6);
if (_drawStartX > 0)
{
for (int x = 0; x < _drawStartX; x++)
{
_currentBuffer[(scanline << 10) + (x << 1)] = _currentBuffer[(scanline << 8) + x];
_currentBuffer[(scanline << 10) + (x << 1) + 1] = _currentBuffer[(scanline << 8) + x];
}
memcpy(_currentBuffer + (scanline << 10) + 512, _currentBuffer + (scanline << 10), 512 * sizeof(uint16_t));
}
for (int i = scanline - 1; i >= 0; i--)
{
for (int x = 0; x < 256; x++)
{
_currentBuffer[(i << 10) + (x << 1)] = _currentBuffer[(i << 8) + x];
_currentBuffer[(i << 10) + (x << 1) + 1] = _currentBuffer[(i << 8) + x];
}
memcpy(_currentBuffer + (i << 10) + 512, _currentBuffer + (i << 10), 512 * sizeof(uint16_t));
}
}
void Ppu::ApplyHiResMode()
{
//When overscan mode is off, center the 224-line picture in the center of the 239-line output buffer
uint16_t scanline = _overscanFrame ? (_scanline - 1) : (_scanline + 6);
if (!_useHighResOutput)
{
memcpy(_currentBuffer + (scanline << 8) + _drawStartX, _mainScreenBuffer + _drawStartX,
(_drawEndX - _drawStartX + 1) << 1);
}
else
{
_interlacedFrame |= _state.ScreenInterlace;
uint32_t screenY = _state.ScreenInterlace
? (_oddFrame ? ((scanline << 1) + 1) : (scanline << 1))
: (scanline << 1);
uint32_t baseAddr = (screenY << 9);
if (IsDoubleWidth())
{
ApplyBrightness<false>();
for (int x = _drawStartX; x <= _drawEndX; x++)
{
_currentBuffer[baseAddr + (x << 1)] = _subScreenBuffer[x];
_currentBuffer[baseAddr + (x << 1) + 1] = _mainScreenBuffer[x];
}
}
else
{
for (int x = _drawStartX; x <= _drawEndX; x++)
{
_currentBuffer[baseAddr + (x << 1)] = _mainScreenBuffer[x];
_currentBuffer[baseAddr + (x << 1) + 1] = _mainScreenBuffer[x];
}
}
if (!_state.ScreenInterlace)
{
//Copy this line's content to the next line (between the current start & end bounds)
memcpy(
_currentBuffer + baseAddr + 512 + (_drawStartX << 1),
_currentBuffer + baseAddr + (_drawStartX << 1),
(_drawEndX - _drawStartX + 1) << 2
);
}
}
}
template <uint8_t layerIndex>
bool Ppu::ProcessMaskWindow(uint8_t activeWindowCount, int x)
{
switch (activeWindowCount)
{
case 1:
if (_state.Window[0].ActiveLayers[layerIndex])
{
return _state.Window[0].PixelNeedsMasking<layerIndex>(x);
}
return _state.Window[1].PixelNeedsMasking<layerIndex>(x);
case 2:
switch (_state.MaskLogic[layerIndex])
{
default:
case WindowMaskLogic::Or: return _state.Window[0].PixelNeedsMasking<layerIndex>(x) | _state.Window[1].
PixelNeedsMasking<layerIndex>(x);
case WindowMaskLogic::And: return _state.Window[0].PixelNeedsMasking<layerIndex>(x) & _state.Window[1].
PixelNeedsMasking<layerIndex>(x);
case WindowMaskLogic::Xor: return _state.Window[0].PixelNeedsMasking<layerIndex>(x) ^ _state.Window[1].
PixelNeedsMasking<layerIndex>(x);
case WindowMaskLogic::Xnor: return !(_state.Window[0].PixelNeedsMasking<layerIndex>(x) ^ _state.Window[1].
PixelNeedsMasking<layerIndex>(x));
}
}
return false;
}
void Ppu::ProcessWindowMaskSettings(uint8_t value, uint8_t offset)
{
_state.Window[0].ActiveLayers[0 + offset] = (value & 0x02) != 0;
_state.Window[0].ActiveLayers[1 + offset] = (value & 0x20) != 0;
_state.Window[0].InvertedLayers[0 + offset] = (value & 0x01) != 0;
_state.Window[0].InvertedLayers[1 + offset] = (value & 0x10) != 0;
_state.Window[1].ActiveLayers[0 + offset] = (value & 0x08) != 0;
_state.Window[1].ActiveLayers[1 + offset] = (value & 0x80) != 0;
_state.Window[1].InvertedLayers[0 + offset] = (value & 0x04) != 0;
_state.Window[1].InvertedLayers[1 + offset] = (value & 0x40) != 0;
}
void Ppu::SendFrame()
{
uint16_t width = _useHighResOutput ? 512 : 256;
uint16_t height = _useHighResOutput ? 478 : 239;
if (!_overscanFrame)
{
//Clear the top 7 and bottom 8 rows
int top = (_useHighResOutput ? 14 : 7);
int bottom = (_useHighResOutput ? 16 : 8);
memset(_currentBuffer, 0, width * top * sizeof(uint16_t));
memset(_currentBuffer + width * (height - bottom), 0, width * bottom * sizeof(uint16_t));
}
_console->GetNotificationManager()->SendNotification(ConsoleNotificationType::PpuFrameDone);
bool isRewinding = _console->GetRewindManager()->IsRewinding();
#ifdef LIBRETRO
_console->GetVideoDecoder()->UpdateFrameSync(_currentBuffer, width, height, _frameCount, isRewinding);
#else
if (isRewinding || _interlacedFrame)
{
_console->GetVideoDecoder()->UpdateFrameSync(_currentBuffer, width, height, _frameCount, isRewinding);
}
else
{
_console->GetVideoDecoder()->UpdateFrame(_currentBuffer, width, height, _frameCount);
}
#endif
if (!_skipRender)
{
_frameSkipTimer.Reset();
}
}
bool Ppu::IsHighResOutput()
{
return _useHighResOutput;
}
uint16_t* Ppu::GetScreenBuffer()
{
return _currentBuffer;
}
uint16_t* Ppu::GetPreviousScreenBuffer()
{
return _currentBuffer == _outputBuffers[0] ? _outputBuffers[1] : _outputBuffers[0];
}
uint8_t* Ppu::GetVideoRam()
{
return (uint8_t*)_vram;
}
uint8_t* Ppu::GetCgRam()
{
return (uint8_t*)_cgram;
}
uint8_t* Ppu::GetSpriteRam()
{
return (uint8_t*)_oamRam;
}
bool Ppu::IsDoubleHeight()
{
return _state.ScreenInterlace && (_state.BgMode == 5 || _state.BgMode == 6);
}
bool Ppu::IsDoubleWidth()
{
return _state.HiResMode || _state.BgMode == 5 || _state.BgMode == 6;
}
void Ppu::SetLocationLatchRequest(uint16_t x, uint16_t y)
{
//Used by super scope
_latchRequest = true;
_latchRequestX = x;
_latchRequestY = y;
}
void Ppu::ProcessLocationLatchRequest()
{
//Used by super scope
if (_latchRequest)
{
uint16_t cycle = GetCycle();
uint16_t scanline = GetRealScanline();
if (scanline > _latchRequestY || (_latchRequestY == scanline && cycle >= _latchRequestX))
{
_latchRequest = false;
_horizontalLocation = _latchRequestX;
_verticalLocation = _latchRequestY;
_locationLatched = true;
}
}
}
void Ppu::LatchLocationValues()
{
_horizontalLocation = GetCycle();
_verticalLocation = GetRealScanline();
_locationLatched = true;
}
void Ppu::UpdateOamAddress()
{
_internalOamAddress = (_state.OamRamAddress << 1);
}
uint16_t Ppu::GetOamAddress()
{
if (_state.ForcedVblank || _scanline >= _vblankStartScanline)
{
return _internalOamAddress;
}
else
{
if (_memoryManager->GetHClock() <= 255 * 4)
{
return _oamEvaluationIndex << 2;
}
else
{
return _oamTimeIndex << 2;
}
}
}
void Ppu::UpdateVramReadBuffer()
{
uint16_t addr = GetVramAddress();
_state.VramReadBuffer = _vram[addr];
}
uint16_t Ppu::GetVramAddress()
{
uint16_t addr = _state.VramAddress;
switch (_state.VramAddressRemapping)
{
default:
case 0: return addr;
case 1: return (addr & 0xFF00) | ((addr & 0xE0) >> 5) | ((addr & 0x1F) << 3);
case 2: return (addr & 0xFE00) | ((addr & 0x1C0) >> 6) | ((addr & 0x3F) << 3);
case 3: return (addr & 0xFC00) | ((addr & 0x380) >> 7) | ((addr & 0x7F) << 3);
}
}
uint8_t Ppu::Read(uint16_t addr)
{
if (_scanline < _vblankStartScanline)
{
RenderScanline();
}
switch (addr)
{
case 0x2134:
_state.Ppu1OpenBus = ((int16_t)_state.Mode7.Matrix[0] * ((int16_t)_state.Mode7.Matrix[1] >> 8)) & 0xFF;
return _state.Ppu1OpenBus;
case 0x2135:
_state.Ppu1OpenBus = (((int16_t)_state.Mode7.Matrix[0] * ((int16_t)_state.Mode7.Matrix[1] >> 8)) >> 8) & 0xFF;
return _state.Ppu1OpenBus;
case 0x2136:
_state.Ppu1OpenBus = (((int16_t)_state.Mode7.Matrix[0] * ((int16_t)_state.Mode7.Matrix[1] >> 8)) >> 16) & 0xFF;
return _state.Ppu1OpenBus;
case 0x2137:
//SLHV - Software Latch for H/V Counter
//Latch values on read, and return open bus
if (_regs->GetIoPortOutput() & 0x80)
{
//Only latch H/V counters if bit 7 of $4201 is set.
LatchLocationValues();
}
break;
case 0x2138:
{
//OAMDATAREAD - Data for OAM read
//When trying to read/write during rendering, the internal address used by the PPU's sprite rendering is used
uint16_t oamAddr = GetOamAddress();
uint8_t value;
if (oamAddr < 512)
{
value = _oamRam[oamAddr];
_console->ProcessPpuRead(oamAddr, value, SnesMemoryType::SpriteRam);
}
else
{
value = _oamRam[0x200 | (oamAddr & 0x1F)];
_console->ProcessPpuRead(0x200 | (oamAddr & 0x1F), value, SnesMemoryType::SpriteRam);
}
_internalOamAddress = (_internalOamAddress + 1) & 0x3FF;
_state.Ppu1OpenBus = value;
return value;
}
case 0x2139:
{
//VMDATALREAD - VRAM Data Read low byte
uint8_t returnValue = (uint8_t)_state.VramReadBuffer;
_console->ProcessPpuRead(GetVramAddress(), returnValue, SnesMemoryType::VideoRam);
if (!_state.VramAddrIncrementOnSecondReg)
{
UpdateVramReadBuffer();
_state.VramAddress = (_state.VramAddress + _state.VramIncrementValue) & 0x7FFF;
}
_state.Ppu1OpenBus = returnValue;
return returnValue;
}
case 0x213A:
{
//VMDATAHREAD - VRAM Data Read high byte
uint8_t returnValue = (uint8_t)(_state.VramReadBuffer >> 8);
_console->ProcessPpuRead(GetVramAddress() + 1, returnValue, SnesMemoryType::VideoRam);
if (_state.VramAddrIncrementOnSecondReg)
{
UpdateVramReadBuffer();
_state.VramAddress = (_state.VramAddress + _state.VramIncrementValue) & 0x7FFF;
}
_state.Ppu1OpenBus = returnValue;
return returnValue;
}
case 0x213B:
{
//CGDATAREAD - CGRAM Data read
uint8_t value;
if (_state.CgramAddressLatch)
{
value = ((_cgram[_state.CgramAddress] >> 8) & 0x7F) | (_state.Ppu2OpenBus & 0x80);
_state.CgramAddress++;
_console->ProcessPpuRead((_state.CgramAddress >> 1) + 1, value, SnesMemoryType::CGRam);
}
else
{
value = (uint8_t)_cgram[_state.CgramAddress];
_console->ProcessPpuRead(_state.CgramAddress >> 1, value, SnesMemoryType::CGRam);
}
_state.CgramAddressLatch = !_state.CgramAddressLatch;
_state.Ppu2OpenBus = value;
return value;
}
case 0x213C:
{
//OPHCT - Horizontal Scanline Location
ProcessLocationLatchRequest();
uint8_t value;
if (_horizontalLocToggle)
{
//"Note that the value read is only 9 bits: bits 1-7 of the high byte are PPU2 Open Bus."
value = ((_horizontalLocation & 0x100) >> 8) | (_state.Ppu2OpenBus & 0xFE);
}
else
{
value = _horizontalLocation & 0xFF;
}
_state.Ppu2OpenBus = value;
_horizontalLocToggle = !_horizontalLocToggle;
return value;
}
case 0x213D:
{
//OPVCT - Vertical Scanline Location
ProcessLocationLatchRequest();
uint8_t value;
if (_verticalLocationToggle)
{
//"Note that the value read is only 9 bits: bits 1-7 of the high byte are PPU2 Open Bus."
value = ((_verticalLocation & 0x100) >> 8) | (_state.Ppu2OpenBus & 0xFE);
}
else
{
value = _verticalLocation & 0xFF;
}
_state.Ppu2OpenBus = value;
_verticalLocationToggle = !_verticalLocationToggle;
return value;
}
case 0x213E:
{
//STAT77 - PPU Status Flag and Version
uint8_t value = (
(_timeOver ? 0x80 : 0) |
(_rangeOver ? 0x40 : 0) |
(_state.Ppu1OpenBus & 0x10) |
0x01 //PPU (5c77) chip version
);
_state.Ppu1OpenBus = value;
return value;
}
case 0x213F:
{
//STAT78 - PPU Status Flag and Version
ProcessLocationLatchRequest();
uint8_t value = (
(_oddFrame ? 0x80 : 0) |
(_locationLatched ? 0x40 : 0) |
(_state.Ppu2OpenBus & 0x20) |
(_console->GetRegion() == ConsoleRegion::Pal ? 0x10 : 0) |
0x03 //PPU (5c78) chip version
);
if (_regs->GetIoPortOutput() & 0x80)
{
_locationLatched = false;
//"The high/low selector is reset to ?elow?f when $213F is read" (the selector is NOT reset when the counter is latched)
_horizontalLocToggle = false;
_verticalLocationToggle = false;
}
_state.Ppu2OpenBus = value;
return value;
}
default:
LogDebug("[Debug] Unimplemented register read: " + HexUtilities::ToHex(addr));
break;
}
uint16_t reg = addr & 0x210F;
if ((reg >= 0x2104 && reg <= 0x2106) || (reg >= 0x2108 && reg <= 0x210A))
{
//Registers matching $21x4-6 or $21x8-A (where x is 0-2) return the last value read from any of the PPU1 registers $2134-6, $2138-A, or $213E.
return _state.Ppu1OpenBus;
}
return _console->GetMemoryManager()->GetOpenBus();
}
void Ppu::Write(uint32_t addr, uint8_t value)
{
if (_scanline < _vblankStartScanline)
{
RenderScanline();
}
switch (addr)
{
case 0x2100:
if (_state.ForcedVblank && _scanline == _nmiScanline)
{
//"writing this register on the first line of V-Blank (225 or 240, depending on overscan) when force blank is currently active causes the OAM Address Reset to occur."
UpdateOamAddress();
}
_state.ForcedVblank = (value & 0x80) != 0;
_state.ScreenBrightness = value & 0x0F;
break;
case 0x2101:
_state.OamMode = (value & 0xE0) >> 5;
_state.OamBaseAddress = (value & 0x07) << 13;
_state.OamAddressOffset = (((value & 0x18) >> 3) + 1) << 12;
break;
case 0x2102:
_state.OamRamAddress = (_state.OamRamAddress & 0x100) | value;
UpdateOamAddress();
break;
case 0x2103:
_state.OamRamAddress = (_state.OamRamAddress & 0xFF) | ((value & 0x01) << 8);
UpdateOamAddress();
_state.EnableOamPriority = (value & 0x80) != 0;
break;
case 0x2104:
{
//When trying to read/write during rendering, the internal address used by the PPU's sprite rendering is used
//This is approximated by _oamRenderAddress (but is not cycle accurate) - needed for Uniracers
uint16_t oamAddr = GetOamAddress();
if (oamAddr < 512)
{
if (oamAddr & 0x01)
{
_console->ProcessPpuWrite(oamAddr - 1, _oamWriteBuffer, SnesMemoryType::SpriteRam);
_oamRam[oamAddr - 1] = _oamWriteBuffer;
_console->ProcessPpuWrite(oamAddr, value, SnesMemoryType::SpriteRam);
_oamRam[oamAddr] = value;
}
else
{
_oamWriteBuffer = value;
}
}
if (!_state.ForcedVblank && _scanline < _nmiScanline)
{
//During rendering the high table is also written to when writing to OAM
oamAddr = 0x200 | ((oamAddr & 0x1F0) >> 4);
}
if (oamAddr >= 512)
{
uint16_t address = 0x200 | (oamAddr & 0x1F);
if ((oamAddr & 0x01) == 0)
{
_oamWriteBuffer = value;
}
_console->ProcessPpuWrite(address, value, SnesMemoryType::SpriteRam);
_oamRam[address] = value;
}
_internalOamAddress = (_internalOamAddress + 1) & 0x3FF;
break;
}
case 0x2105:
if (_state.BgMode != (value & 0x07))
{
LogDebug(
"[Debug] Entering mode: " + std::to_string(value & 0x07) + " (SL: " + std::to_string(_scanline) + ")");
}
_state.BgMode = value & 0x07;
ConvertToHiRes();
_state.Mode1Bg3Priority = (value & 0x08) != 0;
_state.Layers[0].LargeTiles = (value & 0x10) != 0;
_state.Layers[1].LargeTiles = (value & 0x20) != 0;
_state.Layers[2].LargeTiles = (value & 0x40) != 0;
_state.Layers[3].LargeTiles = (value & 0x80) != 0;
break;
case 0x2106:
{
//MOSAIC - Screen Pixelation
_state.MosaicSize = ((value & 0xF0) >> 4) + 1;
uint8_t mosaicEnabled = value & 0x0F;
if (!_state.MosaicEnabled && mosaicEnabled)
{
//"If this register is set during the frame, the ?starting scanline is the current scanline, otherwise it is the first visible scanline of the frame."
//This is only done when mosaic is turned on from an off state (FF6 mosaic effect looks wrong otherwise)
//FF6's mosaic effect is broken on some screens without this.
_mosaicScanlineCounter = _state.MosaicSize + 1;
}
_state.MosaicEnabled = mosaicEnabled;
break;
}
case 0x2107:
case 0x2108:
case 0x2109:
case 0x210A:
//BG 1-4 Tilemap Address and Size (BG1SC, BG2SC, BG3SC, BG4SC)
_state.Layers[addr - 0x2107].TilemapAddress = (value & 0x7C) << 8;
_state.Layers[addr - 0x2107].DoubleWidth = (value & 0x01) != 0;
_state.Layers[addr - 0x2107].DoubleHeight = (value & 0x02) != 0;
break;
case 0x210B:
case 0x210C:
//BG1+2 / BG3+4 Chr Address (BG12NBA / BG34NBA)
_state.Layers[(addr - 0x210B) * 2].ChrAddress = (value & 0x07) << 12;
_state.Layers[(addr - 0x210B) * 2 + 1].ChrAddress = (value & 0x70) << 8;
break;
case 0x210D:
//M7HOFS - Mode 7 BG Horizontal Scroll
//BG1HOFS - BG1 Horizontal Scroll
_state.Mode7.HScroll = ((value << 8) | (_state.Mode7.ValueLatch)) & 0x1FFF;
_state.Mode7.ValueLatch = value;
//no break, keep executing to set the matching BG1 HScroll register, too
case 0x210F:
case 0x2111:
case 0x2113:
//BGXHOFS - BG1/2/3/4 Horizontal Scroll
_state.Layers[(addr - 0x210D) >> 1].HScroll = ((value << 8) | (_hvScrollLatchValue & ~0x07) | (_hScrollLatchValue
& 0x07)) & 0x3FF;
_hvScrollLatchValue = value;
_hScrollLatchValue = value;
break;
case 0x210E:
//M7VOFS - Mode 7 BG Vertical Scroll
//BG1VOFS - BG1 Vertical Scroll
_state.Mode7.VScroll = ((value << 8) | (_state.Mode7.ValueLatch)) & 0x1FFF;
_state.Mode7.ValueLatch = value;
//no break, keep executing to set the matching BG1 HScroll register, too
case 0x2110:
case 0x2112:
case 0x2114:
//BGXVOFS - BG1/2/3/4 Vertical Scroll
_state.Layers[(addr - 0x210E) >> 1].VScroll = ((value << 8) | _hvScrollLatchValue) & 0x3FF;
_hvScrollLatchValue = value;
break;
case 0x2115:
//VMAIN - Video Port Control
switch (value & 0x03)
{
case 0: _state.VramIncrementValue = 1;
break;
case 1: _state.VramIncrementValue = 32;
break;
case 2:
case 3: _state.VramIncrementValue = 128;
break;
}
_state.VramAddressRemapping = (value & 0x0C) >> 2;
_state.VramAddrIncrementOnSecondReg = (value & 0x80) != 0;
break;
case 0x2116:
//VMADDL - VRAM Address low byte
_state.VramAddress = (_state.VramAddress & 0x7F00) | value;
UpdateVramReadBuffer();
break;
case 0x2117:
//VMADDH - VRAM Address high byte
_state.VramAddress = (_state.VramAddress & 0x00FF) | ((value & 0x7F) << 8);
UpdateVramReadBuffer();
break;
case 0x2118:
//VMDATAL - VRAM Data Write low byte
if (_scanline >= _nmiScanline || _state.ForcedVblank)
{
//Only write the value if in vblank or forced blank (writes to VRAM outside vblank/forced blank are not allowed)
_console->ProcessPpuWrite(GetVramAddress() << 1, value, SnesMemoryType::VideoRam);
_vram[GetVramAddress()] = value | (_vram[GetVramAddress()] & 0xFF00);
}
//The VRAM address is incremented even outside of vblank/forced blank
if (!_state.VramAddrIncrementOnSecondReg)
{
_state.VramAddress = (_state.VramAddress + _state.VramIncrementValue) & 0x7FFF;
}
break;
case 0x2119:
//VMDATAH - VRAM Data Write high byte
if (_scanline >= _nmiScanline || _state.ForcedVblank)
{
//Only write the value if in vblank or forced blank (writes to VRAM outside vblank/forced blank are not allowed)
_console->ProcessPpuWrite((GetVramAddress() << 1) + 1, value, SnesMemoryType::VideoRam);
_vram[GetVramAddress()] = (value << 8) | (_vram[GetVramAddress()] & 0xFF);
}
//The VRAM address is incremented even outside of vblank/forced blank
if (_state.VramAddrIncrementOnSecondReg)
{
_state.VramAddress = (_state.VramAddress + _state.VramIncrementValue) & 0x7FFF;
}
break;
case 0x211A:
//M7SEL - Mode 7 Settings
_state.Mode7.LargeMap = (value & 0x80) != 0;
_state.Mode7.FillWithTile0 = (value & 0x40) != 0;
_state.Mode7.HorizontalMirroring = (value & 0x01) != 0;
_state.Mode7.VerticalMirroring = (value & 0x02) != 0;
break;
case 0x211B:
case 0x211C:
case 0x211D:
case 0x211E:
//M7A/B/C/D - Mode 7 Matrix A/B/C/D (A/B are also used with $2134/6)
_state.Mode7.Matrix[addr - 0x211B] = (value << 8) | _state.Mode7.ValueLatch;
_state.Mode7.ValueLatch = value;
break;
case 0x211F:
//M7X - Mode 7 Center X
_state.Mode7.CenterX = ((value << 8) | _state.Mode7.ValueLatch);
_state.Mode7.ValueLatch = value;
break;
case 0x2120:
//M7Y - Mode 7 Center Y
_state.Mode7.CenterY = ((value << 8) | _state.Mode7.ValueLatch);
_state.Mode7.ValueLatch = value;
break;
case 0x2121:
//CGRAM Address(CGADD)
_state.CgramAddress = value;
_state.CgramAddressLatch = false;
break;
case 0x2122:
//CGRAM Data write (CGDATA)
if (_state.CgramAddressLatch)
{
//MSB ignores the 7th bit (colors are 15-bit only)
_console->ProcessPpuWrite(_state.CgramAddress >> 1, _state.CgramWriteBuffer, SnesMemoryType::CGRam);
_console->ProcessPpuWrite((_state.CgramAddress >> 1) + 1, value & 0x7F, SnesMemoryType::CGRam);
_cgram[_state.CgramAddress] = _state.CgramWriteBuffer | ((value & 0x7F) << 8);
_state.CgramAddress++;
}
else
{
_state.CgramWriteBuffer = value;
}
_state.CgramAddressLatch = !_state.CgramAddressLatch;
break;
case 0x2123:
//W12SEL - Window Mask Settings for BG1 and BG2
ProcessWindowMaskSettings(value, 0);
break;
case 0x2124:
//W34SEL - Window Mask Settings for BG3 and BG4
ProcessWindowMaskSettings(value, 2);
break;
case 0x2125:
//WOBJSEL - Window Mask Settings for OBJ and Color Window
ProcessWindowMaskSettings(value, 4);
break;
case 0x2126:
//WH0 - Window 1 Left Position
_state.Window[0].Left = value;
break;
case 0x2127:
//WH1 - Window 1 Right Position
_state.Window[0].Right = value;
break;
case 0x2128:
//WH2 - Window 2 Left Position
_state.Window[1].Left = value;
break;
case 0x2129:
//WH3 - Window 2 Right Position
_state.Window[1].Right = value;
break;
case 0x212A:
//WBGLOG - Window mask logic for BG
_state.MaskLogic[0] = (WindowMaskLogic)(value & 0x03);
_state.MaskLogic[1] = (WindowMaskLogic)((value >> 2) & 0x03);
_state.MaskLogic[2] = (WindowMaskLogic)((value >> 4) & 0x03);
_state.MaskLogic[3] = (WindowMaskLogic)((value >> 6) & 0x03);
break;
case 0x212B:
//WOBJLOG - Window mask logic for OBJs and Color Window
_state.MaskLogic[4] = (WindowMaskLogic)((value >> 0) & 0x03);
_state.MaskLogic[5] = (WindowMaskLogic)((value >> 2) & 0x03);
break;
case 0x212C:
//TM - Main Screen Designation
_state.MainScreenLayers = value & 0x1F;
break;
case 0x212D:
//TS - Subscreen Designation
_state.SubScreenLayers = value & 0x1F;
break;
case 0x212E:
//TMW - Window Mask Designation for the Main Screen
for (int i = 0; i < 5; i++)
{
_state.WindowMaskMain[i] = ((value >> i) & 0x01) != 0;
}
break;
case 0x212F:
//TSW - Window Mask Designation for the Subscreen
for (int i = 0; i < 5; i++)
{
_state.WindowMaskSub[i] = ((value >> i) & 0x01) != 0;
}
break;
case 0x2130:
//CGWSEL - Color Addition Select
_state.ColorMathClipMode = (ColorWindowMode)((value >> 6) & 0x03);
_state.ColorMathPreventMode = (ColorWindowMode)((value >> 4) & 0x03);
_state.ColorMathAddSubscreen = (value & 0x02) != 0;
_state.DirectColorMode = (value & 0x01) != 0;
break;
case 0x2131:
//CGADSUB - Color math designation
_state.ColorMathEnabled = value & 0x3F;
_state.ColorMathSubstractMode = (value & 0x80) != 0;
_state.ColorMathHalveResult = (value & 0x40) != 0;
break;
case 0x2132:
//COLDATA - Fixed Color Data
if (value & 0x80)
{
//B
_state.FixedColor = (_state.FixedColor & ~0x7C00) | ((value & 0x1F) << 10);
}
if (value & 0x40)
{
//G
_state.FixedColor = (_state.FixedColor & ~0x3E0) | ((value & 0x1F) << 5);
}
if (value & 0x20)
{
//R
_state.FixedColor = (_state.FixedColor & ~0x1F) | (value & 0x1F);
}
break;
case 0x2133:
{
//SETINI - Screen Mode/Video Select
//_externalSync = (value & 0x80) != 0; //NOT USED
_state.ExtBgEnabled = (value & 0x40) != 0;
_state.HiResMode = (value & 0x08) != 0;
_state.OverscanMode = (value & 0x04) != 0;
_state.ObjInterlace = (value & 0x02) != 0;
bool interlace = (value & 0x01) != 0;
if (_state.ScreenInterlace != interlace)
{
_state.ScreenInterlace = interlace;
if (_scanline >= _vblankStartScanline && interlace)
{
//Clear buffer when turning on interlace mode during vblank
memset(GetPreviousScreenBuffer(), 0, 512 * 478 * sizeof(uint16_t));
}
}
ConvertToHiRes();
break;
}
default:
LogDebug(
"[Debug] Unimplemented register write: " + HexUtilities::ToHex(addr) + " = " + HexUtilities::ToHex(value));
break;
}
}
void Ppu::Serialize(Serializer& s)
{
uint16_t unused_oamRenderAddress = 0;
s.Stream(
_state.ForcedVblank, _state.ScreenBrightness, _scanline, _frameCount, _drawStartX, _drawEndX, _state.BgMode,
_state.Mode1Bg3Priority, _state.MainScreenLayers, _state.SubScreenLayers, _state.VramAddress,
_state.VramIncrementValue, _state.VramAddressRemapping,
_state.VramAddrIncrementOnSecondReg, _state.VramReadBuffer, _state.Ppu1OpenBus, _state.Ppu2OpenBus,
_state.CgramAddress, _state.MosaicSize, _state.MosaicEnabled,
_mosaicScanlineCounter, _state.OamMode, _state.OamBaseAddress, _state.OamAddressOffset, _state.OamRamAddress,
_state.EnableOamPriority,
_internalOamAddress, _oamWriteBuffer, _timeOver, _rangeOver, _state.HiResMode, _state.ScreenInterlace,
_state.ObjInterlace,
_state.OverscanMode, _state.DirectColorMode, _state.ColorMathClipMode, _state.ColorMathPreventMode,
_state.ColorMathAddSubscreen, _state.ColorMathEnabled,
_state.ColorMathSubstractMode, _state.ColorMathHalveResult, _state.FixedColor, _hvScrollLatchValue,
_hScrollLatchValue,
_horizontalLocation, _horizontalLocToggle, _verticalLocation, _verticalLocationToggle, _locationLatched,
_state.MaskLogic[0], _state.MaskLogic[1], _state.MaskLogic[2], _state.MaskLogic[3], _state.MaskLogic[4],
_state.MaskLogic[5],
_state.WindowMaskMain[0], _state.WindowMaskMain[1], _state.WindowMaskMain[2], _state.WindowMaskMain[3],
_state.WindowMaskMain[4],
_state.WindowMaskSub[0], _state.WindowMaskSub[1], _state.WindowMaskSub[2], _state.WindowMaskSub[3],
_state.WindowMaskSub[4],
_state.Mode7.CenterX, _state.Mode7.CenterY, _state.ExtBgEnabled, _state.Mode7.FillWithTile0,
_state.Mode7.HorizontalMirroring,
_state.Mode7.HScroll, _state.Mode7.LargeMap, _state.Mode7.Matrix[0], _state.Mode7.Matrix[1],
_state.Mode7.Matrix[2], _state.Mode7.Matrix[3],
_state.Mode7.ValueLatch, _state.Mode7.VerticalMirroring, _state.Mode7.VScroll, unused_oamRenderAddress, _oddFrame,
_vblankStartScanline,
_state.CgramAddressLatch, _state.CgramWriteBuffer, _nmiScanline, _vblankEndScanline, _adjustedVblankEndScanline,
_baseVblankEndScanline,
_overclockEnabled
);
for (int i = 0; i < 4; i++)
{
s.Stream(
_state.Layers[i].ChrAddress, _state.Layers[i].DoubleHeight, _state.Layers[i].DoubleWidth,
_state.Layers[i].HScroll,
_state.Layers[i].LargeTiles, _state.Layers[i].TilemapAddress, _state.Layers[i].VScroll
);
}
for (int i = 0; i < 2; i++)
{
s.Stream(
_state.Window[i].ActiveLayers[0], _state.Window[i].ActiveLayers[1], _state.Window[i].ActiveLayers[2],
_state.Window[i].ActiveLayers[3], _state.Window[i].ActiveLayers[4], _state.Window[i].ActiveLayers[5],
_state.Window[i].InvertedLayers[0], _state.Window[i].InvertedLayers[1], _state.Window[i].InvertedLayers[2],
_state.Window[i].InvertedLayers[3], _state.Window[i].InvertedLayers[4], _state.Window[i].InvertedLayers[5],
_state.Window[i].Left, _state.Window[i].Right
);
}
s.StreamArray(_vram, Ppu::VideoRamSize >> 1);
s.StreamArray(_oamRam, Ppu::SpriteRamSize);
s.StreamArray(_cgram, Ppu::CgRamSize >> 1);
for (int i = 0; i < 4; i++)
{
for (int j = 0; j < 33; j++)
{
s.Stream(
_layerData[i].Tiles[j].ChrData[0], _layerData[i].Tiles[j].ChrData[1], _layerData[i].Tiles[j].ChrData[2],
_layerData[i].Tiles[j].ChrData[3],
_layerData[i].Tiles[j].TilemapData, _layerData[i].Tiles[j].VScroll
);
}
}
s.Stream(_hOffset, _vOffset, _fetchBgStart, _fetchBgEnd, _fetchSpriteStart, _fetchSpriteEnd);
}
void Ppu::RandomizeState()
{
_state.ScreenBrightness = _settings->GetRandomValue(0x0F);
_state.Mode7.CenterX = _settings->GetRandomValue(0xFFFF);
_state.Mode7.CenterY = _settings->GetRandomValue(0xFFFF);
_state.Mode7.FillWithTile0 = _settings->GetRandomBool();
_state.Mode7.HorizontalMirroring = _settings->GetRandomBool();
_state.Mode7.HScroll = _settings->GetRandomValue(0x1FFF);
_state.Mode7.HScrollLatch = _settings->GetRandomValue(0x1FFF);
_state.Mode7.LargeMap = _settings->GetRandomBool();
_state.Mode7.Matrix[0] = _settings->GetRandomValue(0xFFFF);
_state.Mode7.Matrix[1] = _settings->GetRandomValue(0xFFFF);
_state.Mode7.Matrix[2] = _settings->GetRandomValue(0xFFFF);
_state.Mode7.Matrix[3] = _settings->GetRandomValue(0xFFFF);
_state.Mode7.ValueLatch = _settings->GetRandomValue(0xFF);
_state.Mode7.VerticalMirroring = _settings->GetRandomBool();
_state.Mode7.VScroll = _settings->GetRandomValue(0x1FFF);
_state.Mode7.VScrollLatch = _settings->GetRandomValue(0x1FFF);
_state.BgMode = _settings->GetRandomValue(7);
_state.Mode1Bg3Priority = _settings->GetRandomBool();
_state.MainScreenLayers = _settings->GetRandomValue(0x1F);
_state.SubScreenLayers = _settings->GetRandomValue(0x1F);
for (int i = 0; i < 4; i++)
{
_state.Layers[i].TilemapAddress = _settings->GetRandomValue(0x1F) << 10;
_state.Layers[i].ChrAddress = _settings->GetRandomValue(0x07) << 12;
_state.Layers[i].HScroll = _settings->GetRandomValue(0x1FFF);
_state.Layers[i].VScroll = _settings->GetRandomValue(0x1FFF);
_state.Layers[i].DoubleWidth = _settings->GetRandomBool();
_state.Layers[i].DoubleHeight = _settings->GetRandomBool();
_state.Layers[i].LargeTiles = _settings->GetRandomBool();
}
for (int i = 0; i < 2; i++)
{
_state.Window[i].Left = _settings->GetRandomValue(0xFF);
_state.Window[i].Right = _settings->GetRandomValue(0xFF);
for (int j = 0; j < 6; j++)
{
_state.Window[i].ActiveLayers[j] = _settings->GetRandomBool();
_state.Window[i].InvertedLayers[j] = _settings->GetRandomBool();
}
}
for (int i = 0; i < 6; i++)
{
_state.MaskLogic[i] = (WindowMaskLogic)_settings->GetRandomValue(3);
}
for (int i = 0; i < 5; i++)
{
_state.WindowMaskMain[i] = _settings->GetRandomBool();
_state.WindowMaskSub[i] = _settings->GetRandomBool();
}
_state.VramAddress = _settings->GetRandomValue(0x7FFF);
switch (_settings->GetRandomValue(0x03))
{
case 0: _state.VramIncrementValue = 1;
break;
case 1: _state.VramIncrementValue = 32;
break;
case 2:
case 3: _state.VramIncrementValue = 128;
break;
}
_state.VramAddressRemapping = _settings->GetRandomValue(0x03);
_state.VramAddrIncrementOnSecondReg = _settings->GetRandomBool();
_state.VramReadBuffer = _settings->GetRandomValue(0xFFFF);
_state.Ppu1OpenBus = _settings->GetRandomValue(0xFF);
_state.Ppu2OpenBus = _settings->GetRandomValue(0xFF);
_state.CgramAddress = _settings->GetRandomValue(0xFF);
_state.CgramWriteBuffer = _settings->GetRandomValue(0xFF);
_state.CgramAddressLatch = _settings->GetRandomBool();
_state.MosaicSize = _settings->GetRandomValue(0x0F) + 1;
_state.MosaicEnabled = _settings->GetRandomValue(0x0F);
_state.OamRamAddress = _settings->GetRandomValue(0x1FF);
_state.OamMode = _settings->GetRandomValue(0x07);
_state.OamBaseAddress = _settings->GetRandomValue(0x07) << 13;
_state.OamAddressOffset = (_settings->GetRandomValue(0x03) + 1) << 12;
_state.EnableOamPriority = _settings->GetRandomBool();
_state.ExtBgEnabled = _settings->GetRandomBool();
_state.HiResMode = _settings->GetRandomBool();
_state.ScreenInterlace = _settings->GetRandomBool();
_state.ObjInterlace = _settings->GetRandomBool();
_state.OverscanMode = _settings->GetRandomBool();
_state.DirectColorMode = _settings->GetRandomBool();
_state.ColorMathClipMode = (ColorWindowMode)_settings->GetRandomValue(3);
_state.ColorMathPreventMode = (ColorWindowMode)_settings->GetRandomValue(3);
_state.ColorMathAddSubscreen = _settings->GetRandomBool();
_state.ColorMathEnabled = _settings->GetRandomValue(0x3F);
_state.ColorMathSubstractMode = _settings->GetRandomBool();
_state.ColorMathHalveResult = _settings->GetRandomBool();
_state.FixedColor = _settings->GetRandomValue(0x7FFF);
}
/* Everything below this point is used to select the proper arguments for templates */
template <uint8_t layerIndex, uint8_t bpp, uint8_t normalPriority, uint8_t highPriority, uint16_t basePaletteOffset,
bool hiResMode, bool applyMosaic>
void Ppu::RenderTilemap()
{
if (_state.DirectColorMode)
{
RenderTilemap<layerIndex, bpp, normalPriority, highPriority, basePaletteOffset, hiResMode, applyMosaic, true>();
}
else
{
RenderTilemap<layerIndex, bpp, normalPriority, highPriority, basePaletteOffset, hiResMode, applyMosaic, false>();
}
}
template <uint8_t layerIndex, uint8_t bpp, uint8_t normalPriority, uint8_t highPriority, uint16_t basePaletteOffset,
bool hiResMode>
void Ppu::RenderTilemap()
{
bool applyMosaic = ((_state.MosaicEnabled >> layerIndex) & 0x01) != 0 && (_state.MosaicSize > 1 || _state.BgMode == 5
|| _state.BgMode == 6);
if (applyMosaic)
{
RenderTilemap<layerIndex, bpp, normalPriority, highPriority, basePaletteOffset, hiResMode, true>();
}
else
{
RenderTilemap<layerIndex, bpp, normalPriority, highPriority, basePaletteOffset, hiResMode, false>();
}
}
template <uint8_t layerIndex, uint8_t bpp, uint8_t normalPriority, uint8_t highPriority, uint16_t basePaletteOffset>
void Ppu::RenderTilemap()
{
if (!IsRenderRequired(layerIndex))
{
return;
}
if (_state.BgMode == 5 || _state.BgMode == 6)
{
RenderTilemap<layerIndex, bpp, normalPriority, highPriority, basePaletteOffset, true>();
}
else
{
RenderTilemap<layerIndex, bpp, normalPriority, highPriority, basePaletteOffset, false>();
}
}
template <uint8_t layerIndex, uint8_t normalPriority, uint8_t highPriority>
void Ppu::RenderTilemapMode7()
{
if (!IsRenderRequired(layerIndex))
{
return;
}
bool applyMosaic = ((_state.MosaicEnabled >> layerIndex) & 0x01) != 0;
if (applyMosaic)
{
RenderTilemapMode7<layerIndex, normalPriority, highPriority, true>();
}
else
{
RenderTilemapMode7<layerIndex, normalPriority, highPriority, false>();
}
}
template <uint8_t layerIndex, uint8_t normalPriority, uint8_t highPriority, bool applyMosaic>
void Ppu::RenderTilemapMode7()
{
if (_state.DirectColorMode)
{
RenderTilemapMode7<layerIndex, normalPriority, highPriority, applyMosaic, true>();
}
else
{
RenderTilemapMode7<layerIndex, normalPriority, highPriority, applyMosaic, false>();
}
}