#include "stdafx.h" #include "CPU.h" #include "PPU.h" #include "APU.h" #include "DeltaModulationChannel.h" #include "Debugger.h" #include "NsfMapper.h" #include "Console.h" CPU::CPU(shared_ptr console) { _console = console; Func opTable[] = { // 0 1 2 3 4 5 6 7 8 9 A B C D E F &CPU::BRK, &CPU::ORA, &CPU::HLT, &CPU::SLO, &CPU::NOP, &CPU::ORA, &CPU::ASL_Memory, &CPU::SLO, &CPU::PHP, &CPU::ORA, &CPU::ASL_Acc, &CPU::AAC, &CPU::NOP, &CPU::ORA, &CPU::ASL_Memory, &CPU::SLO, //0 &CPU::BPL, &CPU::ORA, &CPU::HLT, &CPU::SLO, &CPU::NOP, &CPU::ORA, &CPU::ASL_Memory, &CPU::SLO, &CPU::CLC, &CPU::ORA, &CPU::NOP, &CPU::SLO, &CPU::NOP, &CPU::ORA, &CPU::ASL_Memory, &CPU::SLO, //1 &CPU::JSR, &CPU::AND, &CPU::HLT, &CPU::RLA, &CPU::BIT, &CPU::AND, &CPU::ROL_Memory, &CPU::RLA, &CPU::PLP, &CPU::AND, &CPU::ROL_Acc, &CPU::AAC, &CPU::BIT, &CPU::AND, &CPU::ROL_Memory, &CPU::RLA, //2 &CPU::BMI, &CPU::AND, &CPU::HLT, &CPU::RLA, &CPU::NOP, &CPU::AND, &CPU::ROL_Memory, &CPU::RLA, &CPU::SEC, &CPU::AND, &CPU::NOP, &CPU::RLA, &CPU::NOP, &CPU::AND, &CPU::ROL_Memory, &CPU::RLA, //3 &CPU::RTI, &CPU::EOR, &CPU::HLT, &CPU::SRE, &CPU::NOP, &CPU::EOR, &CPU::LSR_Memory, &CPU::SRE, &CPU::PHA, &CPU::EOR, &CPU::LSR_Acc, &CPU::ASR, &CPU::JMP_Abs, &CPU::EOR, &CPU::LSR_Memory, &CPU::SRE, //4 &CPU::BVC, &CPU::EOR, &CPU::HLT, &CPU::SRE, &CPU::NOP, &CPU::EOR, &CPU::LSR_Memory, &CPU::SRE, &CPU::CLI, &CPU::EOR, &CPU::NOP, &CPU::SRE, &CPU::NOP, &CPU::EOR, &CPU::LSR_Memory, &CPU::SRE, //5 &CPU::RTS, &CPU::ADC, &CPU::HLT, &CPU::RRA, &CPU::NOP, &CPU::ADC, &CPU::ROR_Memory, &CPU::RRA, &CPU::PLA, &CPU::ADC, &CPU::ROR_Acc, &CPU::ARR, &CPU::JMP_Ind, &CPU::ADC, &CPU::ROR_Memory, &CPU::RRA, //6 &CPU::BVS, &CPU::ADC, &CPU::HLT, &CPU::RRA, &CPU::NOP, &CPU::ADC, &CPU::ROR_Memory, &CPU::RRA, &CPU::SEI, &CPU::ADC, &CPU::NOP, &CPU::RRA, &CPU::NOP, &CPU::ADC, &CPU::ROR_Memory, &CPU::RRA, //7 &CPU::NOP, &CPU::STA, &CPU::NOP, &CPU::SAX, &CPU::STY, &CPU::STA, &CPU::STX, &CPU::SAX, &CPU::DEY, &CPU::NOP, &CPU::TXA, &CPU::UNK, &CPU::STY, &CPU::STA, &CPU::STX, &CPU::SAX, //8 &CPU::BCC, &CPU::STA, &CPU::HLT, &CPU::AXA, &CPU::STY, &CPU::STA, &CPU::STX, &CPU::SAX, &CPU::TYA, &CPU::STA, &CPU::TXS, &CPU::TAS, &CPU::SYA, &CPU::STA, &CPU::SXA, &CPU::AXA, //9 &CPU::LDY, &CPU::LDA, &CPU::LDX, &CPU::LAX, &CPU::LDY, &CPU::LDA, &CPU::LDX, &CPU::LAX, &CPU::TAY, &CPU::LDA, &CPU::TAX, &CPU::ATX, &CPU::LDY, &CPU::LDA, &CPU::LDX, &CPU::LAX, //A &CPU::BCS, &CPU::LDA, &CPU::HLT, &CPU::LAX, &CPU::LDY, &CPU::LDA, &CPU::LDX, &CPU::LAX, &CPU::CLV, &CPU::LDA, &CPU::TSX, &CPU::LAS, &CPU::LDY, &CPU::LDA, &CPU::LDX, &CPU::LAX, //B &CPU::CPY, &CPU::CPA, &CPU::NOP, &CPU::DCP, &CPU::CPY, &CPU::CPA, &CPU::DEC, &CPU::DCP, &CPU::INY, &CPU::CPA, &CPU::DEX, &CPU::AXS, &CPU::CPY, &CPU::CPA, &CPU::DEC, &CPU::DCP, //C &CPU::BNE, &CPU::CPA, &CPU::HLT, &CPU::DCP, &CPU::NOP, &CPU::CPA, &CPU::DEC, &CPU::DCP, &CPU::CLD, &CPU::CPA, &CPU::NOP, &CPU::DCP, &CPU::NOP, &CPU::CPA, &CPU::DEC, &CPU::DCP, //D &CPU::CPX, &CPU::SBC, &CPU::NOP, &CPU::ISB, &CPU::CPX, &CPU::SBC, &CPU::INC, &CPU::ISB, &CPU::INX, &CPU::SBC, &CPU::NOP, &CPU::SBC, &CPU::CPX, &CPU::SBC, &CPU::INC, &CPU::ISB, //E &CPU::BEQ, &CPU::SBC, &CPU::HLT, &CPU::ISB, &CPU::NOP, &CPU::SBC, &CPU::INC, &CPU::ISB, &CPU::SED, &CPU::SBC, &CPU::NOP, &CPU::ISB, &CPU::NOP, &CPU::SBC, &CPU::INC, &CPU::ISB //F }; typedef AddrMode M; AddrMode addrMode[] = { // 0 1 2 3 4 5 6 7 8 9 A B C D E F M::Imp, M::IndX, M::None, M::IndX, M::Zero, M::Zero, M::Zero, M::Zero, M::Imp, M::Imm, M::Acc, M::Imm, M::Abs, M::Abs, M::Abs, M::Abs, //0 M::Rel, M::IndY, M::None, M::IndYW, M::ZeroX, M::ZeroX, M::ZeroX, M::ZeroX, M::Imp, M::AbsY, M::Imp, M::AbsYW,M::AbsX, M::AbsX, M::AbsXW,M::AbsXW,//1 M::Abs, M::IndX, M::None, M::IndX, M::Zero, M::Zero, M::Zero, M::Zero, M::Imp, M::Imm, M::Acc, M::Imm, M::Abs, M::Abs, M::Abs, M::Abs, //2 M::Rel, M::IndY, M::None, M::IndYW, M::ZeroX, M::ZeroX, M::ZeroX, M::ZeroX, M::Imp, M::AbsY, M::Imp, M::AbsYW,M::AbsX, M::AbsX, M::AbsXW,M::AbsXW,//3 M::Imp, M::IndX, M::None, M::IndX, M::Zero, M::Zero, M::Zero, M::Zero, M::Imp, M::Imm, M::Acc, M::Imm, M::Abs, M::Abs, M::Abs, M::Abs, //4 M::Rel, M::IndY, M::None, M::IndYW, M::ZeroX, M::ZeroX, M::ZeroX, M::ZeroX, M::Imp, M::AbsY, M::Imp, M::AbsYW,M::AbsX, M::AbsX, M::AbsXW,M::AbsXW,//5 M::Imp, M::IndX, M::None, M::IndX, M::Zero, M::Zero, M::Zero, M::Zero, M::Imp, M::Imm, M::Acc, M::Imm, M::Ind, M::Abs, M::Abs, M::Abs, //6 M::Rel, M::IndY, M::None, M::IndYW, M::ZeroX, M::ZeroX, M::ZeroX, M::ZeroX, M::Imp, M::AbsY, M::Imp, M::AbsYW,M::AbsX, M::AbsX, M::AbsXW,M::AbsXW,//7 M::Imm, M::IndX, M::Imm, M::IndX, M::Zero, M::Zero, M::Zero, M::Zero, M::Imp, M::Imm, M::Imp, M::Imm, M::Abs, M::Abs, M::Abs, M::Abs, //8 M::Rel, M::IndYW, M::None, M::IndYW, M::ZeroX, M::ZeroX, M::ZeroY, M::ZeroY, M::Imp, M::AbsYW,M::Imp, M::AbsYW,M::AbsXW,M::AbsXW,M::AbsYW,M::AbsYW,//9 M::Imm, M::IndX, M::Imm, M::IndX, M::Zero, M::Zero, M::Zero, M::Zero, M::Imp, M::Imm, M::Imp, M::Imm, M::Abs, M::Abs, M::Abs, M::Abs, //A M::Rel, M::IndY, M::None, M::IndY, M::ZeroX, M::ZeroX, M::ZeroY, M::ZeroY, M::Imp, M::AbsY, M::Imp, M::AbsY, M::AbsX, M::AbsX, M::AbsY, M::AbsY, //B M::Imm, M::IndX, M::Imm, M::IndX, M::Zero, M::Zero, M::Zero, M::Zero, M::Imp, M::Imm, M::Imp, M::Imm, M::Abs, M::Abs, M::Abs, M::Abs, //C M::Rel, M::IndY, M::None, M::IndYW, M::ZeroX, M::ZeroX, M::ZeroX, M::ZeroX, M::Imp, M::AbsY, M::Imp, M::AbsYW,M::AbsX, M::AbsX, M::AbsXW,M::AbsXW,//D M::Imm, M::IndX, M::Imm, M::IndX, M::Zero, M::Zero, M::Zero, M::Zero, M::Imp, M::Imm, M::Imp, M::Imm, M::Abs, M::Abs, M::Abs, M::Abs, //E M::Rel, M::IndY, M::None, M::IndYW, M::ZeroX, M::ZeroX, M::ZeroX, M::ZeroX, M::Imp, M::AbsY, M::Imp, M::AbsYW,M::AbsX, M::AbsX, M::AbsXW,M::AbsXW,//F }; memcpy(_opTable, opTable, sizeof(opTable)); memcpy(_addrMode, addrMode, sizeof(addrMode)); _instAddrMode = AddrMode::None; _state = {}; _cycleCount = 0; _operand = 0; _spriteDmaCounter = 0; _spriteDmaTransfer = false; _dmcCounter = 0; _dmcDmaRunning = false; _cpuWrite = false; _writeAddr = false; _irqMask = 0; _state = {}; _prevRunIrq = false; _runIrq = false; } void CPU::Reset(bool softReset, NesModel model) { _memoryManager = _console->GetMemoryManager(); _state.NMIFlag = false; _state.IRQFlag = 0; _cycleCount = -1; _spriteDmaTransfer = false; _spriteDmaCounter = 0; _dmcCounter = -1; _dmcDmaRunning = false; //Used by NSF code to disable Frame Counter & DMC interrupts _irqMask = 0xFF; //Use _memoryManager->Read() directly to prevent clocking the PPU/APU when setting PC at reset _state.PC = _memoryManager->Read(CPU::ResetVector) | _memoryManager->Read(CPU::ResetVector+1) << 8; if(softReset) { SetFlags(PSFlags::Interrupt); _state.SP -= 0x03; } else { _state.A = 0; _state.SP = 0xFD; _state.X = 0; _state.Y = 0; _state.PS = PSFlags::Interrupt; _runIrq = false; } //The CPU takes some cycles before starting its execution after a reset/power up for(int i = 0; i < (model == NesModel::NTSC ? 28 : 30); i++) { _console->GetPpu()->Exec(); } for(int i = 0; i < 10; i++) { _console->GetApu()->ProcessCpuClock(); } } void CPU::Exec() { uint8_t opCode = GetOPCode(); _instAddrMode = _addrMode[opCode]; _operand = FetchOperand(); (this->*_opTable[opCode])(); if(_prevRunIrq) { IRQ(); } } void CPU::IRQ() { uint16_t originalPc = PC(); DummyRead(); //fetch opcode (and discard it - $00 (BRK) is forced into the opcode register instead) DummyRead(); //read next instruction byte (actually the same as above, since PC increment is suppressed. Also discarded.) Push((uint16_t)(PC())); if(_state.NMIFlag) { Push((uint8_t)(PS() | PSFlags::Reserved)); SetFlags(PSFlags::Interrupt); SetPC(MemoryReadWord(CPU::NMIVector)); _state.NMIFlag = false; _console->DebugAddTrace("NMI"); _console->DebugProcessInterrupt(originalPc, _state.PC, true); } else { Push((uint8_t)(PS() | PSFlags::Reserved)); SetFlags(PSFlags::Interrupt); SetPC(MemoryReadWord(CPU::IRQVector)); _console->DebugAddTrace("IRQ"); _console->DebugProcessInterrupt(originalPc, _state.PC, false); } } void CPU::BRK() { Push((uint16_t)(PC() + 1)); uint8_t flags = PS() | PSFlags::Break | PSFlags::Reserved; if(_state.NMIFlag) { Push((uint8_t)flags); SetFlags(PSFlags::Interrupt); SetPC(MemoryReadWord(CPU::NMIVector)); _console->DebugAddTrace("NMI"); } else { Push((uint8_t)flags); SetFlags(PSFlags::Interrupt); SetPC(MemoryReadWord(CPU::IRQVector)); _console->DebugAddTrace("IRQ"); } //Since we just set the flag to prevent interrupts, do not run one right away after this (fixes nmi_and_brk & nmi_and_irq tests) _prevRunIrq = false; } void CPU::MemoryWrite(uint16_t addr, uint8_t value) { _cpuWrite = true;; _writeAddr = addr; IncCycleCount(); while(_dmcDmaRunning) { IncCycleCount(); } _memoryManager->Write(addr, value); //DMA DMC might have started after a write to $4015, stall CPU if needed while(_dmcDmaRunning) { IncCycleCount(); } _cpuWrite = false; } uint8_t CPU::MemoryRead(uint16_t addr, MemoryOperationType operationType) { IncCycleCount(); while(_dmcDmaRunning) { //Stall CPU until we can process a DMC read if((addr != 0x4016 && addr != 0x4017 && (_cycleCount & 0x01)) || _dmcCounter == 1) { //While the CPU is stalled, reads are performed on the current address //Reads are only performed every other cycle? This fixes "dma_2007_read" test //This behavior causes the $4016/7 data corruption when a DMC is running. //When reading $4016/7, only the last read counts (because this only occurs to low-to-high transitions, i.e once in this case) _memoryManager->Read(addr); } IncCycleCount(); } uint8_t value = _memoryManager->Read(addr, operationType); return value; } uint16_t CPU::FetchOperand() { switch(_instAddrMode) { case AddrMode::Acc: case AddrMode::Imp: DummyRead(); return 0; case AddrMode::Imm: case AddrMode::Rel: return GetImmediate(); case AddrMode::Zero: return GetZeroAddr(); case AddrMode::ZeroX: return GetZeroXAddr(); case AddrMode::ZeroY: return GetZeroYAddr(); case AddrMode::Ind: return GetIndAddr(); case AddrMode::IndX: return GetIndXAddr(); case AddrMode::IndY: return GetIndYAddr(false); case AddrMode::IndYW: return GetIndYAddr(true); case AddrMode::Abs: return GetAbsAddr(); case AddrMode::AbsX: return GetAbsXAddr(false); case AddrMode::AbsXW: return GetAbsXAddr(true); case AddrMode::AbsY: return GetAbsYAddr(false); case AddrMode::AbsYW: return GetAbsYAddr(true); default: break; } #ifndef LIBRETRO _console->BreakIfDebugging(); if(NsfMapper::GetInstance()) { //Don't stop emulation on CPU crash when playing NSFs, reset cpu instead _console->Reset(true); return 0; } else if(!_console->GetDebugger(false)) { //Throw an error and stop emulation core (if debugger is not enabled) throw std::runtime_error("Invalid OP code - CPU crashed"); } else { return 0; } #else return 0; #endif } void CPU::IncCycleCount() { _cycleCount++; if(_dmcDmaRunning) { //CPU is being stalled by the DMC's DMA transfer _dmcCounter--; if(_dmcCounter == 0) { //Update the DMC buffer when the stall period is completed _dmcDmaRunning = false; _console->GetApu()->FillDmcReadBuffer(); _console->DebugAddTrace("DMC DMA End"); } } _console->ProcessCpuClock(); if(!_spriteDmaTransfer && !_dmcDmaRunning) { //IRQ flags are ignored during Sprite DMA - fixes irq_and_dma //"it's really the status of the interrupt lines at the end of the second-to-last cycle that matters." //Keep the irq lines values from the previous cycle. The before-to-last cycle's values will be used _prevRunIrq = _runIrq; _runIrq = _state.NMIFlag || ((_state.IRQFlag & _irqMask) > 0 && !CheckFlag(PSFlags::Interrupt)); } } void CPU::RunDMATransfer(uint8_t offsetValue) { _console->DebugAddTrace("Sprite DMA Start"); _spriteDmaTransfer = true; //"The CPU is suspended during the transfer, which will take 513 or 514 cycles after the $4014 write tick." //"(1 dummy read cycle while waiting for writes to complete, +1 if on an odd CPU cycle, then 256 alternating read/write cycles.)" if(_cycleCount % 2 != 0) { DummyRead(); } DummyRead(); _spriteDmaCounter = 256; //DMA transfer starts at SpriteRamAddr and wraps around for(int i = 0; i < 0x100; i++) { //Read value uint8_t readValue = MemoryRead(offsetValue * 0x100 + i); //Write to sprite ram via $2004 ("DMA is implemented in the 2A03/7 chip and works by repeatedly writing to OAMDATA") MemoryWrite(0x2004, readValue); _spriteDmaCounter--; } _spriteDmaTransfer = false; _console->DebugAddTrace("Sprite DMA End"); } void CPU::StartDmcTransfer() { //"DMC DMA adds 4 cycles normally, 2 if it lands on the $4014 write or during OAM DMA" //3 cycles if it lands on the last write cycle of any instruction _console->DebugAddTrace("DMC DMA Start"); _dmcDmaRunning = true; if(_spriteDmaTransfer) { if(_spriteDmaCounter == 2) { _dmcCounter = 1; } else if(_spriteDmaCounter == 1) { _dmcCounter = 3; } else { _dmcCounter = 2; } } else { if(_cpuWrite) { if(_writeAddr == 0x4014) { _dmcCounter = 2; } else { _dmcCounter = 3; } } else { _dmcCounter = 4; } } } uint32_t CPU::GetClockRate(NesModel model) { switch(model) { default: case NesModel::NTSC: return CPU::ClockRateNtsc; break; case NesModel::PAL: return CPU::ClockRatePal; break; case NesModel::Dendy: return CPU::ClockRateDendy; break; } } void CPU::StreamState(bool saving) { uint32_t overclockRate = EmulationSettings::GetOverclockRateSetting(); bool overclockAdjustApu = EmulationSettings::GetOverclockAdjustApu(); uint32_t extraScanlinesBeforeNmi = EmulationSettings::GetPpuExtraScanlinesBeforeNmi(); uint32_t extraScanlinesAfterNmi = EmulationSettings::GetPpuExtraScanlinesAfterNmi(); Stream(_state.PC, _state.SP, _state.PS, _state.A, _state.X, _state.Y, _cycleCount, _state.NMIFlag, _state.IRQFlag, _dmcCounter, _dmcDmaRunning, _spriteDmaCounter, _spriteDmaTransfer, overclockRate, overclockAdjustApu, extraScanlinesBeforeNmi, extraScanlinesBeforeNmi); if(!saving) { EmulationSettings::SetOverclockRate(overclockRate, overclockAdjustApu); EmulationSettings::SetPpuNmiConfig(extraScanlinesBeforeNmi, extraScanlinesAfterNmi); } }