#include "stdafx.h" #include "PPU.h" #include "CPU.h" #include "APU.h" #include "EmulationSettings.h" #include "VideoDecoder.h" #include "Debugger.h" #include "BaseMapper.h" #include "RewindManager.h" #include "ControlManager.h" PPU* PPU::Instance = nullptr; PPU::PPU(BaseMapper *mapper, ControlManager *controlManager) { PPU::Instance = this; _mapper = mapper; _controlManager = controlManager; _outputBuffers[0] = new uint16_t[256 * 240]; _outputBuffers[1] = new uint16_t[256 * 240]; _currentOutputBuffer = _outputBuffers[0]; memset(_outputBuffers[0], 0, 256 * 240 * sizeof(uint16_t)); memset(_outputBuffers[1], 0, 256 * 240 * sizeof(uint16_t)); uint8_t paletteRamBootValues[0x20] { 0x09, 0x01, 0x00, 0x01, 0x00, 0x02, 0x02, 0x0D, 0x08, 0x10, 0x08, 0x24, 0x00, 0x00, 0x04, 0x2C, 0x09, 0x01, 0x34, 0x03, 0x00, 0x04, 0x00, 0x14, 0x08, 0x3A, 0x00, 0x02, 0x00, 0x20, 0x2C, 0x08 }; memcpy(_paletteRAM, paletteRamBootValues, sizeof(_paletteRAM)); BaseMapper::InitializeRam(_spriteRAM, 0x100); BaseMapper::InitializeRam(_secondarySpriteRAM, 0x20); Reset(); } PPU::~PPU() { delete[] _outputBuffers[0]; delete[] _outputBuffers[1]; } void PPU::Reset() { _cyclesNeeded = 0; _needStateUpdate = false; _prevRenderingEnabled = false; _renderingEnabled = false; _ignoreVramRead = 0; _openBus = 0; memset(_openBusDecayStamp, 0, sizeof(_openBusDecayStamp)); _state = {}; _flags = {}; _statusFlags = {}; _previousTile = {}; _currentTile = {}; _nextTile = {}; _intensifyColorBits = 0; _paletteRamMask = 0x3F; _lastUpdatedPixel = -1; _lastSprite = nullptr; _oamCopybuffer = 0; _spriteInRange = false; _sprite0Added = false; _spriteAddrH = 0; _spriteAddrL = 0; _oamCopyDone = false; _renderingEnabled = false; _prevRenderingEnabled = false; _cyclesNeeded = 0.0; memset(_hasSprite, 0, sizeof(_hasSprite)); memset(_spriteTiles, 0, sizeof(SpriteInfo)); _spriteCount = 0; _secondaryOAMAddr = 0; _sprite0Visible = false; _overflowSpriteAddr = 0; _spriteIndex = 0; _openBus = 0; memset(_openBusDecayStamp, 0, sizeof(_openBusDecayStamp)); _ignoreVramRead = 0; //First execution will be cycle 0, scanline 0 _scanline = -1; _cycle = 340; _frameCount = 1; _memoryReadBuffer = 0; _overflowBugCounter = 0; _updateVramAddrDelay = 0; _updateVramAddr = 0; memset(_oamDecayCycles, 0, sizeof(_oamDecayCycles)); _enableOamDecay = EmulationSettings::CheckFlag(EmulationFlags::EnableOamDecay); UpdateMinimumDrawCycles(); } void PPU::SetNesModel(NesModel model) { _nesModel = model; switch(_nesModel) { case NesModel::NTSC: _nmiScanline = 241; _vblankEnd = 260; _standardNmiScanline = 241; _standardVblankEnd = 260; break; case NesModel::PAL: _nmiScanline = 241; _vblankEnd = 310; _standardNmiScanline = 241; _standardVblankEnd = 310; break; case NesModel::Dendy: _nmiScanline = 291; _vblankEnd = 310; _standardNmiScanline = 291; _standardVblankEnd = 310; break; } _nmiScanline += EmulationSettings::GetPpuExtraScanlinesBeforeNmi(); _palSpriteEvalScanline = _nmiScanline + 24; _standardVblankEnd += EmulationSettings::GetPpuExtraScanlinesBeforeNmi(); _vblankEnd += EmulationSettings::GetPpuExtraScanlinesAfterNmi() + EmulationSettings::GetPpuExtraScanlinesBeforeNmi(); } PPUDebugState PPU::GetState() { PPUDebugState state; state.ControlFlags = _flags; state.StatusFlags = _statusFlags; state.State = _state; state.Cycle = _cycle; state.Scanline = _scanline; state.FrameCount = _frameCount; return state; } void PPU::SetState(PPUDebugState state) { _flags = state.ControlFlags; _statusFlags = state.StatusFlags; _state = state.State; _cycle = state.Cycle; _scanline = state.Scanline; _frameCount = state.FrameCount; UpdateMinimumDrawCycles(); _paletteRamMask = _flags.Grayscale ? 0x30 : 0x3F; if(_nesModel == NesModel::NTSC) { _intensifyColorBits = (_flags.IntensifyGreen ? 0x40 : 0x00) | (_flags.IntensifyRed ? 0x80 : 0x00) | (_flags.IntensifyBlue ? 0x100 : 0x00); } else if(_nesModel == NesModel::PAL || _nesModel == NesModel::Dendy) { //"Note that on the Dendy and PAL NES, the green and red bits swap meaning." _intensifyColorBits = (_flags.IntensifyRed ? 0x40 : 0x00) | (_flags.IntensifyGreen ? 0x80 : 0x00) | (_flags.IntensifyBlue ? 0x100 : 0x00); } } void PPU::UpdateVideoRamAddr() { if(_scanline >= 240 || !IsRenderingEnabled()) { _state.VideoRamAddr += _flags.VerticalWrite ? 32 : 1; //Trigger memory read when setting the vram address - needed by MMC3 IRQ counter //"Should be clocked when A12 changes to 1 via $2007 read/write" _mapper->ReadVRAM(_state.VideoRamAddr, MemoryOperationType::Read); } else { //"During rendering (on the pre-render line and the visible lines 0-239, provided either background or sprite rendering is enabled), " //it will update v in an odd way, triggering a coarse X increment and a Y increment simultaneously" IncHorizontalScrolling(); IncVerticalScrolling(); } } void PPU::SetOpenBus(uint8_t mask, uint8_t value) { //Decay expired bits, set new bits and update stamps on each individual bit if(mask == 0xFF) { //Shortcut when mask is 0xFF - all bits are set to the value and stamps updated _openBus = value; for(int i = 0; i < 8; i++) { _openBusDecayStamp[i] = _frameCount; } } else { uint16_t openBus = (_openBus << 8); for(int i = 0; i < 8; i++) { openBus >>= 1; if(mask & 0x01) { if(value & 0x01) { openBus |= 0x80; } else { openBus &= 0xFF7F; } _openBusDecayStamp[i] = _frameCount; } else if(_frameCount - _openBusDecayStamp[i] > 30) { openBus &= 0xFF7F; } value >>= 1; mask >>= 1; } _openBus = (uint8_t)openBus; } } uint8_t PPU::ApplyOpenBus(uint8_t mask, uint8_t value) { SetOpenBus(~mask, value); return value | (_openBus & mask); } uint8_t PPU::ReadRAM(uint16_t addr) { uint8_t openBusMask = 0xFF; uint8_t returnValue = 0; switch(GetRegisterID(addr)) { case PPURegisters::Status: _state.WriteToggle = false; _flags.IntensifyBlue = false; UpdateStatusFlag(); returnValue = _state.Status; openBusMask = 0x1F; switch(EmulationSettings::GetPpuModel()) { case PpuModel::Ppu2C05A: openBusMask = 0x00; returnValue |= 0x1B; break; case PpuModel::Ppu2C05B: openBusMask = 0x00; returnValue |= 0x3D; break; case PpuModel::Ppu2C05C: openBusMask = 0x00; returnValue |= 0x1C; break; case PpuModel::Ppu2C05D: openBusMask = 0x00; returnValue |= 0x1B; break; case PpuModel::Ppu2C05E: openBusMask = 0x00; break; } break; case PPURegisters::SpriteData: if(!EmulationSettings::CheckFlag(EmulationFlags::DisablePpu2004Reads)) { if(_scanline <= 239 && IsRenderingEnabled()) { //While the screen is begin drawn if(_cycle >= 257 && _cycle <= 320) { //If we're doing sprite rendering, set OAM copy buffer to its proper value. This is done here for performance. //It's faster to only do this here when it's needed, rather than splitting LoadSpriteTileInfo() into an 8-step process uint8_t step = ((_cycle - 257) % 8) > 3 ? 3 : ((_cycle - 257) % 8); _secondaryOAMAddr = (_cycle - 257) / 8 * 4 + step; _oamCopybuffer = _secondarySpriteRAM[_secondaryOAMAddr]; } //Return the value that PPU is currently using for sprite evaluation/rendering returnValue = _oamCopybuffer; } else { returnValue = ReadSpriteRam(_state.SpriteRamAddr); } openBusMask = 0x00; } break; case PPURegisters::VideoMemoryData: if(_ignoreVramRead) { //2 reads to $2007 in quick succession (2 consecutive CPU cycles) causes the 2nd read to be ignored (normally depends on PPU/CPU timing, but this is the simplest solution) //Return open bus in this case? (which will match the last value read) openBusMask = 0xFF; } else { returnValue = _memoryReadBuffer; _memoryReadBuffer = _mapper->ReadVRAM(_state.VideoRamAddr, MemoryOperationType::Read); if((_state.VideoRamAddr & 0x3FFF) >= 0x3F00 && !EmulationSettings::CheckFlag(EmulationFlags::DisablePaletteRead)) { returnValue = ReadPaletteRAM(_state.VideoRamAddr) | (_openBus & 0xC0); Debugger::ProcessVramReadOperation(MemoryOperationType::Read, _state.VideoRamAddr & 0x3FFF, returnValue); openBusMask = 0xC0; } else { openBusMask = 0x00; } UpdateVideoRamAddr(); _ignoreVramRead = 6; _needStateUpdate = true; } break; default: break; } return ApplyOpenBus(openBusMask, returnValue); } void PPU::WriteRAM(uint16_t addr, uint8_t value) { if(addr != 0x4014) { SetOpenBus(0xFF, value); } switch(GetRegisterID(addr)) { case PPURegisters::Control: if(EmulationSettings::GetPpuModel() >= PpuModel::Ppu2C05A && EmulationSettings::GetPpuModel() <= PpuModel::Ppu2C05E) { SetMaskRegister(value); } else { SetControlRegister(value); } break; case PPURegisters::Mask: if(EmulationSettings::GetPpuModel() >= PpuModel::Ppu2C05A && EmulationSettings::GetPpuModel() <= PpuModel::Ppu2C05E) { SetControlRegister(value); } else { SetMaskRegister(value); } break; case PPURegisters::SpriteAddr: _state.SpriteRamAddr = value; break; case PPURegisters::SpriteData: if((_scanline >= 240 && (_nesModel != NesModel::PAL || _scanline < _palSpriteEvalScanline)) || !IsRenderingEnabled()) { if((_state.SpriteRamAddr & 0x03) == 0x02) { //"The three unimplemented bits of each sprite's byte 2 do not exist in the PPU and always read back as 0 on PPU revisions that allow reading PPU OAM through OAMDATA ($2004)" value &= 0xE3; } WriteSpriteRam(_state.SpriteRamAddr, value); _state.SpriteRamAddr = (_state.SpriteRamAddr + 1) & 0xFF; } else { //"Writes to OAMDATA during rendering (on the pre-render line and the visible lines 0-239, provided either sprite or background rendering is enabled) do not modify values in OAM, //but do perform a glitchy increment of OAMADDR, bumping only the high 6 bits" _state.SpriteRamAddr = (_state.SpriteRamAddr + 4) & 0xFF; } break; case PPURegisters::ScrollOffsets: if(_state.WriteToggle) { _state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0x73E0) | ((value & 0xF8) << 2) | ((value & 0x07) << 12); } else { _state.XScroll = value & 0x07; _state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0x001F) | (value >> 3); //Update debugger overlay X scroll only Debugger::SetLastFramePpuScroll(_state.TmpVideoRamAddr, _state.XScroll, false); } _state.WriteToggle = !_state.WriteToggle; break; case PPURegisters::VideoMemoryAddr: if(_state.WriteToggle) { _state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0x00FF) | value; //Video RAM update is apparently delayed by 2-3 PPU cycles (based on Visual NES findings) //A 3-cycle delay causes issues with the scanline test. _needStateUpdate = true; _updateVramAddrDelay = 2; _updateVramAddr = _state.TmpVideoRamAddr; Debugger::SetLastFramePpuScroll(_updateVramAddr, _state.XScroll, false); } else { _state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0xFF00) | ((value & 0x3F) << 8); } _state.WriteToggle = !_state.WriteToggle; break; case PPURegisters::VideoMemoryData: if((_state.VideoRamAddr & 0x3FFF) >= 0x3F00) { WritePaletteRAM(_state.VideoRamAddr, value); Debugger::ProcessVramWriteOperation(_state.VideoRamAddr & 0x3FFF, value); } else { _mapper->WriteVRAM(_state.VideoRamAddr, value); } UpdateVideoRamAddr(); break; case PPURegisters::SpriteDMA: CPU::RunDMATransfer(value); break; default: break; } } uint8_t PPU::ReadPaletteRAM(uint16_t addr) { addr &= 0x1F; if(addr == 0x10 || addr == 0x14 || addr == 0x18 || addr == 0x1C) { addr &= ~0x10; } return _paletteRAM[addr]; } void PPU::WritePaletteRAM(uint16_t addr, uint8_t value) { addr &= 0x1F; value &= 0x3F; if(addr == 0x00 || addr == 0x10) { _paletteRAM[0x00] = value; _paletteRAM[0x10] = value; } else if(addr == 0x04 || addr == 0x14) { _paletteRAM[0x04] = value; _paletteRAM[0x14] = value; } else if(addr == 0x08 || addr == 0x18) { _paletteRAM[0x08] = value; _paletteRAM[0x18] = value; } else if(addr == 0x0C || addr == 0x1C) { _paletteRAM[0x0C] = value; _paletteRAM[0x1C] = value; } else { _paletteRAM[addr] = value; } } bool PPU::IsRenderingEnabled() { return _renderingEnabled; } void PPU::SetControlRegister(uint8_t value) { _state.Control = value; uint8_t nameTable = (_state.Control & 0x03); _state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0x0C00) | (nameTable << 10); _flags.VerticalWrite = (_state.Control & 0x04) == 0x04; _flags.SpritePatternAddr = ((_state.Control & 0x08) == 0x08) ? 0x1000 : 0x0000; _flags.BackgroundPatternAddr = ((_state.Control & 0x10) == 0x10) ? 0x1000 : 0x0000; _flags.LargeSprites = (_state.Control & 0x20) == 0x20; //"By toggling NMI_output ($2000 bit 7) during vertical blank without reading $2002, a program can cause /NMI to be pulled low multiple times, causing multiple NMIs to be generated." bool originalVBlank = _flags.VBlank; _flags.VBlank = (_state.Control & 0x80) == 0x80; if(!originalVBlank && _flags.VBlank && _statusFlags.VerticalBlank && (_scanline != -1 || _cycle != 0)) { CPU::SetNMIFlag(); } if(_scanline == 241 && _cycle < 3 && !_flags.VBlank) { CPU::ClearNMIFlag(); } } void PPU::UpdateMinimumDrawCycles() { _minimumDrawBgCycle = _flags.BackgroundEnabled ? ((_flags.BackgroundMask || EmulationSettings::CheckFlag(EmulationFlags::ForceBackgroundFirstColumn)) ? 0 : 8) : 300; _minimumDrawSpriteCycle = _flags.SpritesEnabled ? ((_flags.SpriteMask || EmulationSettings::CheckFlag(EmulationFlags::ForceSpritesFirstColumn)) ? 0 : 8) : 300; _minimumDrawSpriteStandardCycle = _flags.SpritesEnabled ? (_flags.SpriteMask ? 0 : 8) : 300; } void PPU::SetMaskRegister(uint8_t value) { _state.Mask = value; _flags.Grayscale = (_state.Mask & 0x01) == 0x01; _flags.BackgroundMask = (_state.Mask & 0x02) == 0x02; _flags.SpriteMask = (_state.Mask & 0x04) == 0x04; _flags.BackgroundEnabled = (_state.Mask & 0x08) == 0x08; _flags.SpritesEnabled = (_state.Mask & 0x10) == 0x10; _flags.IntensifyBlue = (_state.Mask & 0x80) == 0x80; if(_renderingEnabled != (_flags.BackgroundEnabled | _flags.SpritesEnabled)) { _needStateUpdate = true; } UpdateMinimumDrawCycles(); UpdateGrayscaleAndIntensifyBits(); //"Bit 0 controls a greyscale mode, which causes the palette to use only the colors from the grey column: $00, $10, $20, $30. This is implemented as a bitwise AND with $30 on any value read from PPU $3F00-$3FFF" _paletteRamMask = _flags.Grayscale ? 0x30 : 0x3F; if(_nesModel == NesModel::NTSC) { _flags.IntensifyRed = (_state.Mask & 0x20) == 0x20; _flags.IntensifyGreen = (_state.Mask & 0x40) == 0x40; _intensifyColorBits = (value & 0xE0) << 1; } else if(_nesModel == NesModel::PAL || _nesModel == NesModel::Dendy) { //"Note that on the Dendy and PAL NES, the green and red bits swap meaning." _flags.IntensifyRed = (_state.Mask & 0x40) == 0x40; _flags.IntensifyGreen = (_state.Mask & 0x20) == 0x20; _intensifyColorBits = (_flags.IntensifyRed ? 0x40 : 0x00) | (_flags.IntensifyGreen ? 0x80 : 0x00) | (_flags.IntensifyBlue ? 0x100 : 0x00); } } void PPU::UpdateStatusFlag() { _state.Status = ((uint8_t)_statusFlags.SpriteOverflow << 5) | ((uint8_t)_statusFlags.Sprite0Hit << 6) | ((uint8_t)_statusFlags.VerticalBlank << 7); _statusFlags.VerticalBlank = false; if(_scanline == 241 && _cycle < 3) { //"Reading on the same PPU clock or one later reads it as set, clears it, and suppresses the NMI for that frame." _statusFlags.VerticalBlank = false; CPU::ClearNMIFlag(); if(_cycle == 0) { //"Reading one PPU clock before reads it as clear and never sets the flag or generates NMI for that frame. " _state.Status = ((uint8_t)_statusFlags.SpriteOverflow << 5) | ((uint8_t)_statusFlags.Sprite0Hit << 6); } } } //Taken from http://wiki.nesdev.com/w/index.php/The_skinny_on_NES_scrolling#Wrapping_around void PPU::IncVerticalScrolling() { uint16_t addr = _state.VideoRamAddr; if((addr & 0x7000) != 0x7000) { // if fine Y < 7 addr += 0x1000; // increment fine Y } else { // fine Y = 0 addr &= ~0x7000; int y = (addr & 0x03E0) >> 5; // let y = coarse Y if(y == 29) { y = 0; // coarse Y = 0 addr ^= 0x0800; // switch vertical nametable } else if(y == 31){ y = 0; // coarse Y = 0, nametable not switched } else { y++; // increment coarse Y } addr = (addr & ~0x03E0) | (y << 5); // put coarse Y back into v } _state.VideoRamAddr = addr; } //Taken from http://wiki.nesdev.com/w/index.php/The_skinny_on_NES_scrolling#Wrapping_around void PPU::IncHorizontalScrolling() { //Increase coarse X scrolling value. uint16_t addr = _state.VideoRamAddr; if((addr & 0x001F) == 31) { //When the value is 31, wrap around to 0 and switch nametable addr = (addr & ~0x001F) ^ 0x0400; } else { addr++; } _state.VideoRamAddr = addr; } //Taken from http://wiki.nesdev.com/w/index.php/The_skinny_on_NES_scrolling#Tile_and_attribute_fetching uint16_t PPU::GetNameTableAddr() { return 0x2000 | (_state.VideoRamAddr & 0x0FFF); } //Taken from http://wiki.nesdev.com/w/index.php/The_skinny_on_NES_scrolling#Tile_and_attribute_fetching uint16_t PPU::GetAttributeAddr() { return 0x23C0 | (_state.VideoRamAddr & 0x0C00) | ((_state.VideoRamAddr >> 4) & 0x38) | ((_state.VideoRamAddr >> 2) & 0x07); } void PPU::LoadTileInfo() { if(IsRenderingEnabled()) { switch((_cycle - 1) & 0x07) { case 0: { _previousTile = _currentTile; _currentTile = _nextTile; _state.LowBitShift |= _nextTile.LowByte; _state.HighBitShift |= _nextTile.HighByte; uint8_t tileIndex = _mapper->ReadVRAM(GetNameTableAddr()); _nextTile.TileAddr = (tileIndex << 4) | (_state.VideoRamAddr >> 12) | _flags.BackgroundPatternAddr; _nextTile.OffsetY = _state.VideoRamAddr >> 12; break; } case 2: { uint8_t shift = ((_state.VideoRamAddr >> 4) & 0x04) | (_state.VideoRamAddr & 0x02); _nextTile.PaletteOffset = ((_mapper->ReadVRAM(GetAttributeAddr()) >> shift) & 0x03) << 2; break; } case 3: _nextTile.LowByte = _mapper->ReadVRAM(_nextTile.TileAddr); _nextTile.AbsoluteTileAddr = _mapper->ToAbsoluteChrAddress(_nextTile.TileAddr); break; case 5: _nextTile.HighByte = _mapper->ReadVRAM(_nextTile.TileAddr + 8); break; } } } void PPU::LoadSprite(uint8_t spriteY, uint8_t tileIndex, uint8_t attributes, uint8_t spriteX, bool extraSprite) { bool backgroundPriority = (attributes & 0x20) == 0x20; bool horizontalMirror = (attributes & 0x40) == 0x40; bool verticalMirror = (attributes & 0x80) == 0x80; uint16_t tileAddr; uint8_t lineOffset; if(verticalMirror) { lineOffset = (_flags.LargeSprites ? 15 : 7) - (_scanline - spriteY); } else { lineOffset = _scanline - spriteY; } if(_flags.LargeSprites) { tileAddr = (((tileIndex & 0x01) ? 0x1000 : 0x0000) | ((tileIndex & ~0x01) << 4)) + (lineOffset >= 8 ? lineOffset + 8 : lineOffset); } else { tileAddr = ((tileIndex << 4) | _flags.SpritePatternAddr) + lineOffset; } bool fetchLastSprite = true; if((_spriteIndex < _spriteCount || extraSprite) && spriteY < 240) { SpriteInfo &info = _spriteTiles[_spriteIndex]; info.BackgroundPriority = backgroundPriority; info.HorizontalMirror = horizontalMirror; info.VerticalMirror = verticalMirror; info.PaletteOffset = ((attributes & 0x03) << 2) | 0x10; if(extraSprite) { //Use DebugReadVRAM for extra sprites to prevent side-effects. info.LowByte = _mapper->DebugReadVRAM(tileAddr); info.HighByte = _mapper->DebugReadVRAM(tileAddr + 8); } else { fetchLastSprite = false; info.LowByte = _mapper->ReadVRAM(tileAddr); info.HighByte = _mapper->ReadVRAM(tileAddr + 8); } info.TileAddr = tileAddr; info.AbsoluteTileAddr = _mapper->ToAbsoluteChrAddress(tileAddr); info.OffsetY = lineOffset; info.SpriteX = spriteX; if(_scanline >= 0) { //Sprites read on prerender scanline are not shown on scanline 0 for(int i = 0; i < 8 && spriteX + i + 1 < 257; i++) { _hasSprite[spriteX + i + 1] = true; } } } if(fetchLastSprite) { //Fetches to sprite 0xFF for remaining sprites/hidden - used by MMC3 IRQ counter lineOffset = 0; tileIndex = 0xFF; if(_flags.LargeSprites) { tileAddr = (((tileIndex & 0x01) ? 0x1000 : 0x0000) | ((tileIndex & ~0x01) << 4)) + (lineOffset >= 8 ? lineOffset + 8 : lineOffset); } else { tileAddr = ((tileIndex << 4) | _flags.SpritePatternAddr) + lineOffset; } _mapper->ReadVRAM(tileAddr); _mapper->ReadVRAM(tileAddr + 8); } _spriteIndex++; } void PPU::LoadExtraSprites() { if(_spriteCount == 8 && EmulationSettings::CheckFlag(EmulationFlags::RemoveSpriteLimit)) { bool loadExtraSprites = true; if(EmulationSettings::CheckFlag(EmulationFlags::AdaptiveSpriteLimit)) { uint16_t lastPosition = 0xFFFF; uint8_t identicalSpriteCount = 0; uint8_t maxIdenticalSpriteCount = 0; for(int i = 0; i < 64; i++) { uint8_t y = _spriteRAM[i << 2]; if(_scanline >= y && _scanline < y + (_flags.LargeSprites ? 16 : 8)) { uint8_t x = _spriteRAM[(i << 2) + 3]; uint16_t position = (y << 8) | x; if(lastPosition != position) { if(identicalSpriteCount > maxIdenticalSpriteCount) { maxIdenticalSpriteCount = identicalSpriteCount; } lastPosition = position; identicalSpriteCount = 1; } else { identicalSpriteCount++; } } } loadExtraSprites = identicalSpriteCount < 8 && maxIdenticalSpriteCount < 8; } if(loadExtraSprites) { for(uint32_t i = _overflowSpriteAddr; i < 0x100; i += 4) { uint8_t spriteY = _spriteRAM[i]; if(_scanline >= spriteY && _scanline < spriteY + (_flags.LargeSprites ? 16 : 8)) { LoadSprite(spriteY, _spriteRAM[i + 1], _spriteRAM[i + 2], _spriteRAM[i + 3], true); _spriteCount++; } } } } } void PPU::LoadSpriteTileInfo() { uint8_t *spriteAddr = _secondarySpriteRAM + _spriteIndex * 4; LoadSprite(*spriteAddr, *(spriteAddr+1), *(spriteAddr+2), *(spriteAddr+3), false); if(_cycle == 316) { LoadExtraSprites(); } } void PPU::ShiftTileRegisters() { _state.LowBitShift <<= 1; _state.HighBitShift <<= 1; } uint8_t PPU::GetPixelColor() { uint8_t offset = _state.XScroll; uint8_t backgroundColor = 0; uint8_t spriteBgColor = 0; if(_cycle > _minimumDrawBgCycle) { //BackgroundMask = false: Hide background in leftmost 8 pixels of screen spriteBgColor = (((_state.LowBitShift << offset) & 0x8000) >> 15) | (((_state.HighBitShift << offset) & 0x8000) >> 14); if(EmulationSettings::GetBackgroundEnabled()) { backgroundColor = spriteBgColor; } } if(_hasSprite[_cycle] && _cycle > _minimumDrawSpriteCycle) { //SpriteMask = true: Hide sprites in leftmost 8 pixels of screen for(uint8_t i = 0; i < _spriteCount; i++) { int32_t shift = (int32_t)_cycle - _spriteTiles[i].SpriteX - 1; if(shift >= 0 && shift < 8) { _lastSprite = &_spriteTiles[i]; uint8_t spriteColor; if(_spriteTiles[i].HorizontalMirror) { spriteColor = ((_lastSprite->LowByte >> shift) & 0x01) | ((_lastSprite->HighByte >> shift) & 0x01) << 1; } else { spriteColor = ((_lastSprite->LowByte << shift) & 0x80) >> 7 | ((_lastSprite->HighByte << shift) & 0x80) >> 6; } if(spriteColor != 0) { //First sprite without a 00 color, use it. if(i == 0 && spriteBgColor != 0 && _sprite0Visible && _cycle != 256 && _flags.BackgroundEnabled && !_statusFlags.Sprite0Hit && _cycle > _minimumDrawSpriteStandardCycle) { //"The hit condition is basically sprite zero is in range AND the first sprite output unit is outputting a non-zero pixel AND the background drawing unit is outputting a non-zero pixel." //"Sprite zero hits do not register at x=255" (cycle 256) //"... provided that background and sprite rendering are both enabled" //"Should always miss when Y >= 239" _statusFlags.Sprite0Hit = true; } if(EmulationSettings::GetSpritesEnabled() && (backgroundColor == 0 || !_spriteTiles[i].BackgroundPriority)) { //Check sprite priority return _lastSprite->PaletteOffset + spriteColor; } break; } } } } return ((offset + ((_cycle - 1) & 0x07) < 8) ? _previousTile : _currentTile).PaletteOffset + backgroundColor; } void PPU::DrawPixel() { //This is called 3.7 million times per second - needs to be as fast as possible. if(IsRenderingEnabled() || ((_state.VideoRamAddr & 0x3F00) != 0x3F00)) { uint32_t color = GetPixelColor(); _currentOutputBuffer[(_scanline << 8) + _cycle - 1] = _paletteRAM[color & 0x03 ? color : 0]; } else { //"If the current VRAM address points in the range $3F00-$3FFF during forced blanking, the color indicated by this palette location will be shown on screen instead of the backdrop color." _currentOutputBuffer[(_scanline << 8) + _cycle - 1] = _paletteRAM[_state.VideoRamAddr & 0x1F]; } } void PPU::UpdateGrayscaleAndIntensifyBits() { if(_scanline < 0 || _scanline > _nmiScanline) { return; } int pixelNumber; if(_scanline >= 240) { pixelNumber = 61439; } else if(_cycle < 3) { pixelNumber = (_scanline << 8) - 1; } else if(_cycle <= 258) { pixelNumber = (_scanline << 8) + _cycle - 3; } else { pixelNumber = (_scanline << 8) + 255; } if(_paletteRamMask == 0x3F && _intensifyColorBits == 0) { //Nothing to do (most common case) _lastUpdatedPixel = pixelNumber; return; } if(_lastUpdatedPixel < pixelNumber) { uint16_t *out = _currentOutputBuffer + _lastUpdatedPixel + 1; while(_lastUpdatedPixel < pixelNumber) { *out = (*out & _paletteRamMask) | _intensifyColorBits; out++; _lastUpdatedPixel++; } } } void PPU::ProcessScanline() { //Only called for cycle 1+ if(_cycle <= 256) { LoadTileInfo(); if(_prevRenderingEnabled && (_cycle & 0x07) == 0) { IncHorizontalScrolling(); if(_cycle == 256) { IncVerticalScrolling(); } } if(_scanline >= 0) { DrawPixel(); ShiftTileRegisters(); //"Secondary OAM clear and sprite evaluation do not occur on the pre-render line" ProcessSpriteEvaluation(); } else if(_cycle < 9) { //Pre-render scanline logic if(_cycle == 1) { _statusFlags.VerticalBlank = false; } if(_state.SpriteRamAddr >= 0x08 && IsRenderingEnabled() && !EmulationSettings::CheckFlag(EmulationFlags::DisableOamAddrBug)) { //This should only be done if rendering is enabled (otherwise oam_stress test fails immediately) //"If OAMADDR is not less than eight when rendering starts, the eight bytes starting at OAMADDR & 0xF8 are copied to the first eight bytes of OAM" WriteSpriteRam(_cycle - 1, ReadSpriteRam((_state.SpriteRamAddr & 0xF8) + _cycle - 1)); } } } else if(_cycle >= 257 && _cycle <= 320) { if(_cycle == 257) { _spriteIndex = 0; memset(_hasSprite, 0, sizeof(_hasSprite)); if(_prevRenderingEnabled) { //copy horizontal scrolling value from t _state.VideoRamAddr = (_state.VideoRamAddr & ~0x041F) | (_state.TmpVideoRamAddr & 0x041F); } } if(IsRenderingEnabled()) { //"OAMADDR is set to 0 during each of ticks 257-320 (the sprite tile loading interval) of the pre-render and visible scanlines." (When rendering) _state.SpriteRamAddr = 0; if((_cycle - 260) % 8 == 0) { //Cycle 260, 268, etc. This is an approximation (each tile is actually loaded in 8 steps (e.g from 257 to 264)) LoadSpriteTileInfo(); } else if((_cycle - 257) % 8 == 0) { //Garbage NT sprite fetch (257, 265, 273, etc.) - Required for proper MC-ACC IRQs (MMC3 clone) _mapper->ReadVRAM(GetNameTableAddr()); } else if((_cycle - 259) % 8 == 0) { //Garbage AT sprite fetch _mapper->ReadVRAM(GetAttributeAddr()); } if(_scanline == -1 && _cycle >= 280 && _cycle <= 304) { //copy vertical scrolling value from t _state.VideoRamAddr = (_state.VideoRamAddr & ~0x7BE0) | (_state.TmpVideoRamAddr & 0x7BE0); } } } else if(_cycle >= 321 && _cycle <= 336) { LoadTileInfo(); if(_cycle == 321) { if(IsRenderingEnabled()) { _oamCopybuffer = _secondarySpriteRAM[0]; } if(_scanline == -1) { Debugger::SetLastFramePpuScroll(_state.VideoRamAddr, _state.XScroll, false); } } else if(_prevRenderingEnabled && (_cycle == 328 || _cycle == 336)) { _state.LowBitShift <<= 8; _state.HighBitShift <<= 8; IncHorizontalScrolling(); } } else if(_cycle == 337 || _cycle == 339) { if(IsRenderingEnabled()) { _mapper->ReadVRAM(GetNameTableAddr()); if(_scanline == -1 && _nesModel == NesModel::NTSC && _cycle == 339 && (_frameCount & 0x01)) { //This behavior is NTSC-specific - PAL frames are always the same number of cycles //"With rendering enabled, each odd PPU frame is one PPU clock shorter than normal" (skip from 339 to 0, going over 340) _cycle = 340; } } } } void PPU::ProcessSpriteEvaluation() { if(IsRenderingEnabled() || (_nesModel == NesModel::PAL && _scanline >= _palSpriteEvalScanline)) { if(_cycle < 65) { //Clear secondary OAM at between cycle 1 and 64 _oamCopybuffer = 0xFF; _secondarySpriteRAM[(_cycle - 1) >> 1] = 0xFF; } else { if(_cycle == 65) { _sprite0Added = false; _spriteInRange = false; _secondaryOAMAddr = 0; _overflowSpriteAddr = 0; _overflowBugCounter = 0; _oamCopyDone = false; _spriteAddrH = (_state.SpriteRamAddr >> 2) & 0x3F; _spriteAddrL = _state.SpriteRamAddr & 0x03; } else if(_cycle == 256) { _sprite0Visible = _sprite0Added; _spriteCount = (_secondaryOAMAddr >> 2); } if(_cycle & 0x01) { //Read a byte from the primary OAM on odd cycles _oamCopybuffer = ReadSpriteRam(_state.SpriteRamAddr); } else { if(_oamCopyDone) { _spriteAddrH = (_spriteAddrH + 1) & 0x3F; if(_secondaryOAMAddr >= 0x20) { //"As seen above, a side effect of the OAM write disable signal is to turn writes to the secondary OAM into reads from it." _oamCopybuffer = _secondarySpriteRAM[_secondaryOAMAddr & 0x1F]; } } else { if(!_spriteInRange && _scanline >= _oamCopybuffer && _scanline < _oamCopybuffer + (_flags.LargeSprites ? 16 : 8)) { _spriteInRange = true; } if(_secondaryOAMAddr < 0x20) { //Copy 1 byte to secondary OAM _secondarySpriteRAM[_secondaryOAMAddr] = _oamCopybuffer; if(_spriteInRange) { _spriteAddrL++; _secondaryOAMAddr++; if(_spriteAddrH == 0) { _sprite0Added = true; } if(_spriteAddrL == 4) { //Done copying all 4 bytes _spriteInRange = false; _spriteAddrL = 0; _spriteAddrH = (_spriteAddrH + 1) & 0x3F; if(_spriteAddrH == 0) { _oamCopyDone = true; } } } else { //Nothing to copy, skip to next sprite _spriteAddrH = (_spriteAddrH + 1) & 0x3F; if(_spriteAddrH == 0) { _oamCopyDone = true; } } } else { //"As seen above, a side effect of the OAM write disable signal is to turn writes to the secondary OAM into reads from it." _oamCopybuffer = _secondarySpriteRAM[_secondaryOAMAddr & 0x1F]; //8 sprites have been found, check next sprite for overflow + emulate PPU bug if(_overflowSpriteAddr == 0) { //Used to remove sprite limit _overflowSpriteAddr = _spriteAddrH * 4; } if(_spriteInRange) { //Sprite is visible, consider this to be an overflow _statusFlags.SpriteOverflow = true; _spriteAddrL = (_spriteAddrL + 1); if(_spriteAddrL == 4) { _spriteAddrH = (_spriteAddrH + 1) & 0x3F; _spriteAddrL = 0; } if(_overflowBugCounter == 0) { _overflowBugCounter = 3; } else if(_overflowBugCounter > 0) { _overflowBugCounter--; if(_overflowBugCounter == 0) { //"After it finishes "fetching" this sprite(and setting the overflow flag), it realigns back at the beginning of this line and then continues here on the next sprite" _oamCopyDone = true; _spriteAddrL = 0; } } } else { //Sprite isn't on this scanline, trigger sprite evaluation bug - increment both H & L at the same time _spriteAddrH = (_spriteAddrH + 1) & 0x3F; _spriteAddrL = (_spriteAddrL + 1) & 0x03; if(_spriteAddrH == 0) { _oamCopyDone = true; } } } } _state.SpriteRamAddr = (_spriteAddrL & 0x03) | (_spriteAddrH << 2); } } } } uint8_t PPU::ReadSpriteRam(uint8_t addr) { if(!_enableOamDecay) { return _spriteRAM[addr]; } else { int32_t cycle = CPU::GetCycleCount(); if(_oamDecayCycles[addr >> 2] >= cycle) { _oamDecayCycles[addr >> 2] = cycle + 3000; return _spriteRAM[addr]; } else { //If this 4-byte row hasn't been read/written to in over 3000 cpu cycles (~1.7ms), return 0xFF to simulate decay return 0xFF; } } } void PPU::WriteSpriteRam(uint8_t addr, uint8_t value) { _spriteRAM[addr] = value; if(_enableOamDecay) { _oamDecayCycles[addr >> 2] = CPU::GetCycleCount() + 3000; } } void PPU::DebugSendFrame() { VideoDecoder::GetInstance()->UpdateFrame(_currentOutputBuffer); } void PPU::DebugCopyOutputBuffer(uint16_t *target) { memcpy(target, _currentOutputBuffer, PPU::PixelCount * sizeof(uint16_t)); } void PPU::SendFrame() { UpdateGrayscaleAndIntensifyBits(); MessageManager::SendNotification(ConsoleNotificationType::PpuFrameDone, _currentOutputBuffer); #ifdef LIBRETRO VideoDecoder::GetInstance()->UpdateFrameSync(_currentOutputBuffer); #else if(RewindManager::IsRewinding()) { if(!RewindManager::IsStepBack()) { VideoDecoder::GetInstance()->UpdateFrameSync(_currentOutputBuffer); } } else { VideoDecoder::GetInstance()->UpdateFrame(_currentOutputBuffer); } //Switch output buffer. VideoDecoder will decode the last frame while we build the new one. //If VideoDecoder isn't fast enough, UpdateFrame will block until it is ready to accept a new frame. _currentOutputBuffer = (_currentOutputBuffer == _outputBuffers[0]) ? _outputBuffers[1] : _outputBuffers[0]; _enableOamDecay = EmulationSettings::CheckFlag(EmulationFlags::EnableOamDecay); #endif } void PPU::BeginVBlank() { TriggerNmi(); } void PPU::TriggerNmi() { _statusFlags.VerticalBlank = true; if(_flags.VBlank) { CPU::SetNMIFlag(); } } void PPU::UpdateApuStatus() { APU::SetApuStatus(true); if(_scanline > 240) { if(_scanline > _standardVblankEnd) { //Disable APU for extra lines after NMI APU::SetApuStatus(false); } else if(_scanline >= _standardNmiScanline && _scanline < _nmiScanline) { //Disable APU for extra lines before NMI APU::SetApuStatus(false); } } } void PPU::DebugUpdateFrameBuffer(bool toGrayscale) { //Clear output buffer for "Draw partial frame" feature if(toGrayscale) { uint16_t *source = (_currentOutputBuffer == _outputBuffers[0]) ? _outputBuffers[1] : _outputBuffers[0]; for(int i = 0; i < PPU::PixelCount; i++) { _currentOutputBuffer[i] = source[i] & 0x30; } } else { memset(_currentOutputBuffer, 0, PPU::PixelCount * 2); } } void PPU::Exec() { if(_cycle > 339) { _cycle = 0; if(++_scanline > _vblankEnd) { _lastUpdatedPixel = -1; _scanline = -1; UpdateMinimumDrawCycles(); } Debugger::ProcessPpuCycle(); UpdateApuStatus(); if(_scanline == EmulationSettings::GetInputPollScanline()) { _controlManager->UpdateInputState(); } //Cycle = 0 if(_scanline == -1) { _statusFlags.SpriteOverflow = false; _statusFlags.Sprite0Hit = false; } else if(_scanline == 240) { _frameCount++; SendFrame(); } else if(_scanline == _nmiScanline) { BeginVBlank(); } } else { //Cycle > 0 _cycle++; Debugger::ProcessPpuCycle(); if(_scanline < 240) { ProcessScanline(); } else if(_nesModel == NesModel::PAL && _scanline >= _palSpriteEvalScanline) { //"On a PAL machine, because of its extended vertical blank, the PPU begins refreshing OAM roughly 21 scanlines after NMI[2], to prevent it //from decaying during the longer hiatus of rendering. Additionally, it will continue to refresh during the visible portion of the screen //even if rendering is disabled. Because of this, OAM DMA must be done near the beginning of vertical blank on PAL, and everywhere else //it is liable to conflict with the refresh. Since the refresh can't be disabled like on the NTSC hardware, OAM decay does not occur at all on the PAL NES." if(_cycle <= 256) { ProcessSpriteEvaluation(); } else if(_cycle >= 257 && _cycle < 320) { _state.SpriteRamAddr = 0; } } } if(_needStateUpdate) { UpdateState(); } } void PPU::UpdateState() { _needStateUpdate = false; //Rendering enabled flag is apparently set with a 1 cycle delay (i.e setting it at cycle 5 will render cycle 6 like cycle 5 and then take the new settings for cycle 7) _prevRenderingEnabled = _renderingEnabled; _renderingEnabled = _flags.BackgroundEnabled | _flags.SpritesEnabled; if(_prevRenderingEnabled != _renderingEnabled) { _needStateUpdate = true; } if(_updateVramAddrDelay > 0) { _updateVramAddrDelay--; if(_updateVramAddrDelay == 0) { _state.VideoRamAddr = _updateVramAddr; //Trigger memory read when setting the vram address - needed by MMC3 IRQ counter //"4) Should be clocked when A12 changes to 1 via $2006 write" _mapper->ReadVRAM(_state.VideoRamAddr, MemoryOperationType::Read); } else { _needStateUpdate = true; } } if(_ignoreVramRead > 0) { _ignoreVramRead--; if(_ignoreVramRead > 0) { _needStateUpdate = true; } } } void PPU::ExecStatic() { if(!EmulationSettings::HasOverclock()) { PPU::Instance->Exec(); PPU::Instance->Exec(); PPU::Instance->Exec(); if(PPU::Instance->_nesModel == NesModel::PAL && CPU::GetCycleCount() % 5 == 0) { //PAL PPU runs 3.2 clocks for every CPU clock, so we need to run an extra clock every 5 CPU clocks PPU::Instance->Exec(); } } else { if(PPU::Instance->_nesModel == NesModel::PAL) { //PAL PPU runs 3.2 clocks for every CPU clock, so we need to run an extra clock every 5 CPU clocks Instance->_cyclesNeeded += 3.2 / (EmulationSettings::GetOverclockRate() / 100.0); } else { Instance->_cyclesNeeded += 3.0 / (EmulationSettings::GetOverclockRate() / 100.0); } while(Instance->_cyclesNeeded >= 1.0) { PPU::Instance->Exec(); Instance->_cyclesNeeded--; } } } void PPU::StreamState(bool saving) { ArrayInfo paletteRam = { _paletteRAM, 0x20 }; ArrayInfo spriteRam = { _spriteRAM, 0x100 }; ArrayInfo secondarySpriteRam = { _secondarySpriteRAM, 0x20 }; ArrayInfo openBusDecayStamp = { _openBusDecayStamp, 8 }; bool disablePpu2004Reads = false; bool disablePaletteRead = false; bool disableOamAddrBug = false; if(saving) { disablePpu2004Reads = EmulationSettings::CheckFlag(EmulationFlags::DisablePpu2004Reads); disablePaletteRead = EmulationSettings::CheckFlag(EmulationFlags::DisablePaletteRead); disableOamAddrBug = EmulationSettings::CheckFlag(EmulationFlags::DisableOamAddrBug); } uint16_t unusedSpriteDmaAddr = 0; uint16_t unusedSpriteDmaCounter = 0; bool unusedSkipScrollIncrement = false; Stream(_state.Control, _state.Mask, _state.Status, _state.SpriteRamAddr, _state.VideoRamAddr, _state.XScroll, _state.TmpVideoRamAddr, _state.WriteToggle, _state.HighBitShift, _state.LowBitShift, _flags.VerticalWrite, _flags.SpritePatternAddr, _flags.BackgroundPatternAddr, _flags.LargeSprites, _flags.VBlank, _flags.Grayscale, _flags.BackgroundMask, _flags.SpriteMask, _flags.BackgroundEnabled, _flags.SpritesEnabled, _flags.IntensifyRed, _flags.IntensifyGreen, _flags.IntensifyBlue, _paletteRamMask, _intensifyColorBits, _statusFlags.SpriteOverflow, _statusFlags.Sprite0Hit, _statusFlags.VerticalBlank, _scanline, _cycle, _frameCount, _memoryReadBuffer, _currentTile.LowByte, _currentTile.HighByte, _currentTile.PaletteOffset, _nextTile.LowByte, _nextTile.HighByte, _nextTile.PaletteOffset, _nextTile.TileAddr, _previousTile.LowByte, _previousTile.HighByte, _previousTile.PaletteOffset, _spriteIndex, _spriteCount, _secondaryOAMAddr, _sprite0Visible, _oamCopybuffer, _spriteInRange, _sprite0Added, _spriteAddrH, _spriteAddrL, _oamCopyDone, _nesModel, unusedSpriteDmaAddr, unusedSpriteDmaCounter, _prevRenderingEnabled, _renderingEnabled, _openBus, _ignoreVramRead, unusedSkipScrollIncrement, paletteRam, spriteRam, secondarySpriteRam, openBusDecayStamp, _cyclesNeeded, disablePpu2004Reads, disablePaletteRead, disableOamAddrBug, _overflowBugCounter, _updateVramAddr, _updateVramAddrDelay, _needStateUpdate); for(int i = 0; i < 64; i++) { Stream(_spriteTiles[i].SpriteX, _spriteTiles[i].LowByte, _spriteTiles[i].HighByte, _spriteTiles[i].PaletteOffset, _spriteTiles[i].HorizontalMirror, _spriteTiles[i].BackgroundPriority); } if(!saving) { EmulationSettings::SetFlagState(EmulationFlags::DisablePpu2004Reads, disablePpu2004Reads); EmulationSettings::SetFlagState(EmulationFlags::DisablePaletteRead, disablePaletteRead); EmulationSettings::SetFlagState(EmulationFlags::DisableOamAddrBug, disableOamAddrBug); SetNesModel(_nesModel); UpdateMinimumDrawCycles(); for(int i = 0; i < 0x40; i++) { //Set max value to ensure oam decay doesn't cause issues with savestates when used _oamDecayCycles[i] = 0x7FFFFFFF; } for(int i = 0; i < 257; i++) { _hasSprite[i] = true; } _lastUpdatedPixel = -1; UpdateApuStatus(); } }