#include "stdafx.h" #include "PPU.h" #include "CPU.h" IVideoDevice *PPU::VideoDevice = nullptr; uint32_t PPU_PALETTE_RGB[] = { 0x666666, 0x002A88, 0x1412A7, 0x3B00A4, 0x5C007E, 0x6E0040, 0x6C0600, 0x561D00, 0x333500, 0x0B4800, 0x005200, 0x004F08, 0x00404D, 0x000000, 0x000000, 0x000000, 0xADADAD, 0x155FD9, 0x4240FF, 0x7527FE, 0xA01ACC, 0xB71E7B, 0xB53120, 0x994E00, 0x6B6D00, 0x388700, 0x0C9300, 0x008F32, 0x007C8D, 0x000000, 0x000000, 0x000000, 0xFFFEFF, 0x64B0FF, 0x9290FF, 0xC676FF, 0xF36AFF, 0xFE6ECC, 0xFE8170, 0xEA9E22, 0xBCBE00, 0x88D800, 0x5CE430, 0x45E082, 0x48CDDE, 0x4F4F4F, 0x000000, 0x000000, 0xFFFEFF, 0xC0DFFF, 0xD3D2FF, 0xE8C8FF, 0xFBC2FF, 0xFEC4EA, 0xFECCC5, 0xF7D8A5, 0xE4E594, 0xCFEF96, 0xBDF4AB, 0xB3F3CC, 0xB5EBF2, 0xB8B8B8, 0x000000, 0x000000, }; PPU::PPU(MemoryManager *memoryManager) { _memoryManager = memoryManager; _state = {}; _flags = {}; _statusFlags = {}; memset(_spriteRAM, 0xFF, 0x100); _outputBuffer = new uint8_t[256 * 240 * 4]; } PPU::~PPU() { delete[] _outputBuffer; } bool PPU::CheckFlag(PPUControlFlags flag) { return false; } void PPU::UpdateVideoRamAddr() { if(_scanline >= 239 || !IsRenderingEnabled()) { _state.VideoRamAddr += _flags.VerticalWrite ? 32 : 1; } else { //"During rendering (on the pre-render line and the visible lines 0-239, provided either background or sprite rendering is enabled), " //it will update v in an odd way, triggering a coarse X increment and a Y increment simultaneously" IncHorizontalScrolling(); IncVerticalScrolling(); } } uint8_t PPU::ReadRAM(uint16_t addr) { uint8_t returnValue; switch(GetRegisterID(addr)) { case PPURegisters::Status: _state.WriteToggle = false; _flags.IntensifyBlue = false; UpdateStatusFlag(); return _state.Status; case PPURegisters::SpriteData: return _spriteRAM[_state.SpriteRamAddr]; case PPURegisters::VideoMemoryData: returnValue = _memoryReadBuffer; _memoryReadBuffer = _memoryManager->ReadVRAM(_state.VideoRamAddr); if(_state.VideoRamAddr >= 0x3F00) { returnValue = ReadPaletteRAM(_state.VideoRamAddr); } UpdateVideoRamAddr(); return returnValue; default: //other registers are meant to be read-only break; } return 0; } void PPU::WriteRAM(uint16_t addr, uint8_t value) { switch(GetRegisterID(addr)) { case PPURegisters::Control: SetControlRegister(value); break; case PPURegisters::Mask: SetMaskRegister(value); break; case PPURegisters::SpriteAddr: _state.SpriteRamAddr = value; break; case PPURegisters::SpriteData: _spriteRAM[_state.SpriteRamAddr] = value; _state.SpriteRamAddr = (_state.SpriteRamAddr + 1) % 0x100; break; case PPURegisters::ScrollOffsets: if(_state.WriteToggle) { _state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0x73E0) | ((value & 0xF8) << 2) | ((value & 0x07) << 12); } else { _state.XScroll = value & 0x07; _state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0x001F) | (value >> 3); } _state.WriteToggle = !_state.WriteToggle; break; case PPURegisters::VideoMemoryAddr: if(_state.WriteToggle) { _state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0x00FF) | value; _state.VideoRamAddr = _state.TmpVideoRamAddr; } else { _state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0xFF00) | ((value & 0x3F) << 8); } _state.WriteToggle = !_state.WriteToggle; break; case PPURegisters::VideoMemoryData: if(_state.VideoRamAddr >= 0x3F00) { WritePaletteRAM(_state.VideoRamAddr, value); } else { _memoryManager->WriteVRAM(_state.VideoRamAddr, value); } UpdateVideoRamAddr(); break; case PPURegisters::SpriteDMA: //DMA transfer starts at SpriteRamAddr and wraps around for(int i = 0; i < 0x100; i++) { _spriteRAM[(_state.SpriteRamAddr+i)&0xFF] = _memoryManager->Read(value*0x100 + i); } //"the DMA procedure takes 513 CPU cycles (+1 on odd CPU cycles)" CPU::IncCycleCount((CPU::GetCycleCount() % 2 == 0) ? 513 : 514); break; } } uint8_t PPU::ReadPaletteRAM(uint16_t addr) { addr &= 0x1F; if(addr == 0x10 || addr == 0x14 || addr == 0x18 || addr == 0x1C) { addr &= ~0x10; } return _paletteRAM[addr]; } void PPU::WritePaletteRAM(uint16_t addr, uint8_t value) { addr &= 0x1F; if(addr == 0x10 || addr == 0x14 || addr == 0x18 || addr == 0x1C) { addr &= ~0x10; } _paletteRAM[addr] = value; } uint8_t PPU::GetBGPaletteEntry(uint8_t paletteOffset, uint8_t pixel) { if(pixel == 0) { return ReadPaletteRAM(0x3F00) % 64; } else { return ReadPaletteRAM(0x3F00 + paletteOffset + pixel) % 64; } } uint8_t PPU::GetSpritePaletteEntry(uint8_t paletteOffset, uint8_t pixel) { if(pixel == 0) { return ReadPaletteRAM(0x3F00) % 64; } else { return ReadPaletteRAM(0x3F10 + paletteOffset + pixel) % 64; } } bool PPU::IsRenderingEnabled() { return _flags.BackgroundEnabled || _flags.SpritesEnabled; } void PPU::SetControlRegister(uint8_t value) { _state.Control = value; uint8_t nameTable = (_state.Control & 0x03); _state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0x0C00) | (nameTable << 10); _flags.VerticalWrite = (_state.Control & 0x04) == 0x04; _flags.SpritePatternAddr = ((_state.Control & 0x08) == 0x08) ? 0x1000 : 0x0000; _flags.BackgroundPatternAddr = ((_state.Control & 0x10) == 0x10) ? 0x1000 : 0x0000; _flags.LargeSprites = (_state.Control & 0x20) == 0x20; bool originalVBlank = _flags.VBlank; _flags.VBlank = (_state.Control & 0x80) == 0x80; if(!originalVBlank && _flags.VBlank && _statusFlags.VerticalBlank) { CPU::SetNMIFlag(); } } void PPU::SetMaskRegister(uint8_t value) { _state.Mask = value; _flags.Grayscale = (_state.Mask & 0x01) == 0x01; _flags.BackgroundMask = (_state.Mask & 0x02) == 0x02; _flags.SpriteMask = (_state.Mask & 0x04) == 0x04; _flags.BackgroundEnabled = (_state.Mask & 0x08) == 0x08; _flags.SpritesEnabled = (_state.Mask & 0x10) == 0x10; _flags.IntensifyRed = (_state.Mask & 0x20) == 0x20; _flags.IntensifyGreen = (_state.Mask & 0x40) == 0x40; _flags.IntensifyBlue = (_state.Mask & 0x80) == 0x80; } void PPU::UpdateStatusFlag() { _state.Status = ((uint8_t)_statusFlags.SpriteOverflow << 5) | ((uint8_t)_statusFlags.Sprite0Hit << 6) | ((uint8_t)_statusFlags.VerticalBlank << 7); _statusFlags.VerticalBlank = false; if(_scanline == 241 && _cycle == 0) { _doNotSetVBFlag = true; } } //Taken from http://wiki.nesdev.com/w/index.php/The_skinny_on_NES_scrolling#Wrapping_around void PPU::IncVerticalScrolling() { uint16_t addr = _state.VideoRamAddr; if((addr & 0x7000) != 0x7000) { // if fine Y < 7 addr += 0x1000; // increment fine Y } else { // fine Y = 0 addr &= ~0x7000; int y = (addr & 0x03E0) >> 5; // let y = coarse Y if(y == 29) { y = 0; // coarse Y = 0 addr ^= 0x0800; // switch vertical nametable } else if(y == 31){ y = 0; // coarse Y = 0, nametable not switched } else { y++; // increment coarse Y } addr = (addr & ~0x03E0) | (y << 5); // put coarse Y back into v } _state.VideoRamAddr = addr; } //Taken from http://wiki.nesdev.com/w/index.php/The_skinny_on_NES_scrolling#Wrapping_around void PPU::IncHorizontalScrolling() { //Increase coarse X scrolling value. uint16_t addr = _state.VideoRamAddr; if((addr & 0x001F) == 31) { //When the value is 31, wrap around to 0 and switch nametable addr = (addr & ~0x001F) ^ 0x0400; } else { addr++; } _state.VideoRamAddr = addr; } //Take from http://wiki.nesdev.com/w/index.php/The_skinny_on_NES_scrolling#Tile_and_attribute_fetching uint16_t PPU::GetNameTableAddr() { return 0x2000 | (_state.VideoRamAddr & 0x0FFF); } //Take from http://wiki.nesdev.com/w/index.php/The_skinny_on_NES_scrolling#Tile_and_attribute_fetching uint16_t PPU::GetAttributeAddr() { return 0x23C0 | (_state.VideoRamAddr & 0x0C00) | ((_state.VideoRamAddr >> 4) & 0x38) | ((_state.VideoRamAddr >> 2) & 0x07); } void PPU::LoadTileInfo() { _previousTile = _currentTile; _currentTile = _nextTile; uint16_t tileIndex = _memoryManager->ReadVRAM(GetNameTableAddr()); uint16_t tileAddr = (tileIndex << 4) | (_state.VideoRamAddr >> 12) | _flags.BackgroundPatternAddr; uint16_t shift = ((_state.VideoRamAddr >> 4) & 0x04) | (_state.VideoRamAddr & 0x02); _nextTile.PaletteOffset = ((_memoryManager->ReadVRAM(GetAttributeAddr()) >> shift) & 0x03) << 2; _nextTile.LowByte = _memoryManager->ReadVRAM(tileAddr); _nextTile.HighByte = _memoryManager->ReadVRAM(tileAddr + 8); } void PPU::LoadSpriteTileInfo(uint8_t spriteIndex) { uint32_t spriteAddr = spriteIndex * 4; uint8_t spriteY = _secondarySpriteRAM[spriteAddr]; uint8_t tileIndex = _secondarySpriteRAM[spriteAddr+1]; uint8_t attributes = _secondarySpriteRAM[spriteAddr+2]; uint8_t spriteX = _secondarySpriteRAM[spriteAddr+3]; bool backgroundPriority = (attributes & 0x20) == 0x20; bool horizontalMirror = (attributes & 0x40) == 0x40; bool verticalMirror = (attributes & 0x80) == 0x80; if(spriteY < 240) { uint16_t tileAddr; uint8_t lineOffset; if(verticalMirror) { lineOffset = (_flags.LargeSprites ? 15 : 7) - (_scanline - spriteY); } else { lineOffset = _scanline - spriteY; } if(_flags.LargeSprites) { tileAddr = (((tileIndex & 0x01) ? 0x1000 : 0x0000) | ((tileIndex & ~0x01) << 4)) + (lineOffset >= 8 ? lineOffset + 8 : lineOffset); } else { tileAddr = ((tileIndex << 4) | _flags.SpritePatternAddr) + lineOffset; } _spriteX[spriteIndex] = spriteX; _spriteTiles[spriteIndex].BackgroundPriority = backgroundPriority; _spriteTiles[spriteIndex].HorizontalMirror = horizontalMirror; _spriteTiles[spriteIndex].PaletteOffset = (attributes & 0x03) << 2; _spriteTiles[spriteIndex].LowByte = _memoryManager->ReadVRAM(tileAddr); _spriteTiles[spriteIndex].HighByte = _memoryManager->ReadVRAM(tileAddr + 8); } } void PPU::LoadNextTile() { _state.LowBitShift |= _nextTile.LowByte; _state.HighBitShift |= _nextTile.HighByte; } void PPU::InitializeShiftRegisters() { _state.LowBitShift = (_currentTile.LowByte << 8) | _nextTile.LowByte; _state.HighBitShift = (_currentTile.HighByte << 8) | _nextTile.HighByte; } void PPU::ShiftTileRegisters() { _state.LowBitShift <<= 1; _state.HighBitShift <<= 1; } void PPU::DrawPixel() { //This is called 3.7 million times per second - needs to be as fast as possible. uint8_t offset = _state.XScroll; bool useBackground = true; uint32_t backgroundColor = 0; uint32_t spriteColor = 0; if(_flags.BackgroundEnabled) { backgroundColor = (((_state.LowBitShift << offset) & 0x8000) >> 15) | (((_state.HighBitShift << offset) & 0x8000) >> 14); } uint8_t i; if(_flags.SpritesEnabled) { for(i = 0; i < _spriteCount; i++) { int32_t shift = -((int32_t)_spriteX[i] - (int32_t)_cycle + 1); if(shift >= 0 && shift < 8) { if(_spriteTiles[i].HorizontalMirror) { spriteColor = ((_spriteTiles[i].LowByte >> shift) & 0x01) | ((_spriteTiles[i].HighByte >> shift) & 0x01) << 1; } else { spriteColor = ((_spriteTiles[i].LowByte << shift) & 0x80) >> 7 | ((_spriteTiles[i].HighByte << shift) & 0x80) >> 6; } if(spriteColor != 0) { //First sprite without a 00 color, use it. break; } } } } if(_cycle <= 8) { if(!_flags.BackgroundMask) { //"0: Hide background in leftmost 8 pixels of screen;" backgroundColor = 0; } if(!_flags.SpriteMask) { //"0: Hide sprites in leftmost 8 pixels of screen;" spriteColor = 0; } } if(spriteColor != 0 && (backgroundColor == 0 || !_spriteTiles[i].BackgroundPriority)) { //Check sprite priority useBackground = false; } if(i == 0 && spriteColor != 0 && backgroundColor != 0 && _sprite0Visible && _cycle != 256 && _flags.BackgroundEnabled && _flags.SpritesEnabled) { //"The hit condition is basically sprite zero is in range AND the first sprite output unit is outputting a non-zero pixel AND the background drawing unit is outputting a non-zero pixel." //"Sprite zero hits do not register at x=255" (cycle 256) //"... provided that background and sprite rendering are both enabled" //"Should always miss when Y >= 239" _statusFlags.Sprite0Hit = true; } uint32_t pixelColor = 0; if(useBackground) { // If we're grabbing the pixel from the high part of the shift register, use the previous tile's palette, not the current one pixelColor = PPU_PALETTE_RGB[GetBGPaletteEntry(offset + ((_cycle - 1) % 8) < 8 ? _previousTile.PaletteOffset : _currentTile.PaletteOffset, backgroundColor)]; } else { pixelColor = PPU_PALETTE_RGB[GetSpritePaletteEntry(_spriteTiles[i].PaletteOffset, spriteColor)]; } uint32_t bufferPosition = _scanline * 256 + (_cycle - 1); ((uint32_t*)_outputBuffer)[bufferPosition] = 0xFF000000 | pixelColor; //Shift the tile registers to prepare for the next cycle ShiftTileRegisters(); } void PPU::ProcessPreVBlankScanline() { //For pre-render scanline & all visible scanlines if(IsRenderingEnabled()) { //Update video ram address according to scrolling logic if(_cycle == 256) { IncVerticalScrolling(); } else if(_cycle == 257) { //copy horizontal scrolling value from t _state.VideoRamAddr = (_state.VideoRamAddr & ~0x041F) | (_state.TmpVideoRamAddr & 0x041F); } else if((_cycle % 8 == 0 && _cycle > 0 && _cycle < 256) || _cycle == 328 || _cycle == 336) { IncHorizontalScrolling(); } } if(_cycle >= 257 && _cycle <= 320) { //"OAMADDR is set to 0 during each of ticks 257-320 (the sprite tile loading interval) of the pre-render and visible scanlines." _state.SpriteRamAddr = 0; } } void PPU::ProcessPrerenderScanline() { ProcessPreVBlankScanline(); if(_cycle == 1) { _statusFlags.SpriteOverflow = false; _statusFlags.Sprite0Hit = false; _statusFlags.VerticalBlank = false; } else if(_cycle >= 280 && _cycle <= 304) { if(IsRenderingEnabled()) { //copy vertical scrolling value from t _state.VideoRamAddr = (_state.VideoRamAddr & ~0x7BE0) | (_state.TmpVideoRamAddr & 0x7BE0); } } else if(_cycle == 339 && _flags.BackgroundEnabled && (_frameCount % 2 == 1)) { //Skip a cycle for odd frames, if background drawing is enabled _cycle = -1; _scanline = 0; } else if(_cycle == 321 || _cycle == 329) { LoadTileInfo(); if(_cycle == 329) { InitializeShiftRegisters(); } } } void PPU::ProcessVisibleScanline() { if(_cycle > 0 && _cycle <= 256) { if((_cycle - 1) % 8 == 0) { //Cycle 1, 9, 17, etc. if(_cycle != 1) { LoadNextTile(); } LoadTileInfo(); } DrawPixel(); if(IsRenderingEnabled()) { CopyOAMData(); } if(_cycle == 256 && _scanline == 239) { //Send frame to GUI once the last pixel has been output PPU::VideoDevice->UpdateFrame(_outputBuffer); } } else if((_cycle - 261) % 8 == 0 && _cycle <= 320) { uint32_t spriteIndex = (_cycle - 261) / 8; if(spriteIndex < _spriteCount) { LoadSpriteTileInfo(spriteIndex); } } else if(_cycle == 321 || _cycle == 329) { LoadTileInfo(); if(_cycle == 329) { InitializeShiftRegisters(); } } ProcessPreVBlankScanline(); } void PPU::CopyOAMData() { static uint8_t _buffer = 0; static bool _writeData = false; static uint32_t _overflowCounter = 0; static bool _sprite0Added = true; if(_cycle < 65) { //Clear secondary OAM at between cycle 0 and 64 _secondarySpriteRAM[_cycle >> 1] = 0xFF; } else { if(_cycle == 65) { _overflowCounter = 0; _sprite0Added = false; _writeData = false; _secondaryOAMAddr = 0; } else if(_cycle == 256) { _sprite0Visible = _sprite0Added; _spriteCount = (_secondaryOAMAddr >> 2); } if(_cycle & 0x01) { //Read a byte from the primary OAM on odd cycles _buffer = _spriteRAM[_state.SpriteRamAddr & 0xFF]; _state.SpriteRamAddr++; } else { if(!_writeData && _state.SpriteRamAddr < 0x100 && _scanline >= _buffer && _scanline < _buffer + (_flags.LargeSprites ? 16 : 8)) { _writeData = true; } if(_secondaryOAMAddr < 0x20) { //Copy 1 byte to secondary OAM _secondarySpriteRAM[_secondaryOAMAddr] = _buffer; if(_writeData) { _secondaryOAMAddr++; if(_state.SpriteRamAddr == 0x01) { _sprite0Added = true; } if((_secondaryOAMAddr & 0x03) == 0) { //Done copying _writeData = false; } } else { _state.SpriteRamAddr += 3; } } else { //8 sprites have been found, check next sprite for overflow + emulate PPU bug //Based on: http://forums.nesdev.com/viewtopic.php?p=85431#p85431 //Behavior matches: http://forums.nesdev.com/viewtopic.php?p=1387#p1387 if(!_statusFlags.SpriteOverflow) { if(_writeData) { //Sprite is visible, consider this to be an overflow _statusFlags.SpriteOverflow = true; _overflowCounter = 3; } else if((_state.SpriteRamAddr & 0x3) != 0) { //Sprite isn't on this scanline, trigger sprite evaluation bug _state.SpriteRamAddr += 4; } } else { if(_overflowCounter != 0) { _overflowCounter--; if(_overflowCounter == 0) { _state.SpriteRamAddr = (_state.SpriteRamAddr + 3) & 0x0FFC; } } else { _state.SpriteRamAddr = (_state.SpriteRamAddr + 4) & 0x0FFC; } } } } } } void PPU::BeginVBlank() { if(_cycle == 1) { if(!_doNotSetVBFlag) { _statusFlags.VerticalBlank = true; if(_flags.VBlank) { CPU::SetNMIFlag(); } } _doNotSetVBFlag = false; } } void PPU::EndVBlank() { if(_cycle == 340) { _frameCount++; } } void PPU::Exec() { uint64_t equivalentCycleCount = CPU::GetCycleCount() * 3; uint32_t gap = (uint32_t)(equivalentCycleCount - _cycleCount); _cycleCount += gap; while(gap > 0) { if(_scanline == -1) { ProcessPrerenderScanline(); } else if(_scanline < 240) { ProcessVisibleScanline(); } else if(_scanline == 241) { BeginVBlank(); } else if(_scanline == 260) { EndVBlank(); } if(_cycle == 340) { _cycle = 0; _scanline++; if(_scanline == 261) { _scanline = -1; } } else { _cycle++; } gap--; } }