#include "stdafx.h" #include "PPU.h" #include "CPU.h" #include "EmulationSettings.h" #include "VideoDecoder.h" PPU* PPU::Instance = nullptr; PPU::PPU(MemoryManager *memoryManager) { PPU::Instance = this; _memoryManager = memoryManager; _outputBuffers[0] = new uint16_t[256 * 240]; _outputBuffers[1] = new uint16_t[256 * 240]; _currentOutputBuffer = _outputBuffers[0]; memset(_paletteRAM, 0x0F, 0x20); memset(_spriteRAM, 0xFF, 0x100); memset(_secondarySpriteRAM, 0xFF, 0x20); Reset(); } PPU::~PPU() { delete[] _outputBuffers[0]; delete[] _outputBuffers[1]; } void PPU::Reset() { _ignoreVramRead = 0; _openBus = 0; memset(_openBusDecayStamp, 0, sizeof(_openBusDecayStamp)); _skipTick = false; _state = {}; _flags = {}; _statusFlags = {}; _scanline = 0; _cycle = 0; _frameCount = 1; _memoryReadBuffer = 0; } void PPU::SetNesModel(NesModel model) { _nesModel = model; _vblankEnd = (model == NesModel::NTSC ? 260 : 311); } PPUDebugState PPU::GetState() { PPUDebugState state; state.ControlFlags = _flags; state.StatusFlags = _statusFlags; state.State = _state; state.Cycle = _cycle; state.Scanline = _scanline; return state; } void PPU::UpdateVideoRamAddr() { if(_scanline >= 239 || !IsRenderingEnabled()) { _state.VideoRamAddr += _flags.VerticalWrite ? 32 : 1; //Trigger memory read when setting the vram address - needed by MMC3 IRQ counter //"Should be clocked when A12 changes to 1 via $2007 read/write" _memoryManager->ReadVRAM(_state.VideoRamAddr); } else { //"During rendering (on the pre-render line and the visible lines 0-239, provided either background or sprite rendering is enabled), " //it will update v in an odd way, triggering a coarse X increment and a Y increment simultaneously" IncHorizontalScrolling(); IncVerticalScrolling(); } } void PPU::SetOpenBus(uint8_t mask, uint8_t value) { //Decay expired bits, set new bits and update stamps on each individual bit if(mask == 0xFF) { //Shortcut when mask is 0xFF - all bits are set to the value and stamps updated _openBus = value; for(int i = 0; i < 8; i++) { _openBusDecayStamp[i] = _frameCount; } } else { uint16_t openBus = (_openBus << 8); for(int i = 0; i < 8; i++) { openBus >>= 1; if(mask & 0x01) { if(value & 0x01) { openBus |= 0x80; } else { openBus &= 0xFF7F; } _openBusDecayStamp[i] = _frameCount; } else if(_frameCount - _openBusDecayStamp[i] > 30) { openBus &= 0xFF7F; } value >>= 1; mask >>= 1; } _openBus = openBus & 0xFF; } } uint8_t PPU::ApplyOpenBus(uint8_t mask, uint8_t value) { SetOpenBus(~mask, value); return value | (_openBus & mask); } uint8_t PPU::ReadRAM(uint16_t addr) { uint8_t openBusMask = 0xFF; uint8_t returnValue = 0; switch(GetRegisterID(addr)) { case PPURegisters::Status: _state.WriteToggle = false; _flags.IntensifyBlue = false; UpdateStatusFlag(); returnValue = _state.Status; openBusMask = 0x1F; break; case PPURegisters::SpriteData: if(_scanline <= 240 && IsRenderingEnabled() && (_cycle >= 257 || _cycle <= 64)) { if(_cycle >= 257 && _cycle <= 320) { //Set OAM copy buffer to its proper value. This is done here for performance. //It's faster to only do this here when it's needed, rather than splitting LoadSpriteTileInfo() into an 8-step process uint8_t step = ((_cycle - 257) % 8) > 3 ? 3 : ((_cycle - 257) % 8); _secondaryOAMAddr = (_cycle - 257) / 8 * 4 + step; _oamCopybuffer = _secondarySpriteRAM[_secondaryOAMAddr]; } returnValue = _oamCopybuffer; } else { returnValue = _spriteRAM[_state.SpriteRamAddr]; } openBusMask = 0x00; break; case PPURegisters::VideoMemoryData: if(_ignoreVramRead) { //2 reads to $2007 in quick succession (2 consecutive CPU cycles) causes the 2nd read to be ignored (normally depends on PPU/CPU timing, but this is the simplest solution) //Return open bus in this case? (which will match the last value read) openBusMask = 0xFF; } else { returnValue = _memoryReadBuffer; _memoryReadBuffer = _memoryManager->ReadVRAM(_state.VideoRamAddr, MemoryOperationType::Read); if(_state.VideoRamAddr >= 0x3F00) { returnValue = ReadPaletteRAM(_state.VideoRamAddr) | (_openBus & 0xC0); openBusMask = 0xC0; } else { openBusMask = 0x00; } UpdateVideoRamAddr(); _ignoreVramRead = 2; } break; default: break; } return ApplyOpenBus(openBusMask, returnValue); } void PPU::WriteRAM(uint16_t addr, uint8_t value) { if(addr != 0x4014) { SetOpenBus(0xFF, value); } switch(GetRegisterID(addr)) { case PPURegisters::Control: SetControlRegister(value); break; case PPURegisters::Mask: SetMaskRegister(value); break; case PPURegisters::SpriteAddr: _state.SpriteRamAddr = value; break; case PPURegisters::SpriteData: if(_spriteDmaCounter > 0) { _spriteRAM[_spriteDmaAddr & 0xFF] = value; _spriteDmaAddr++; _spriteDmaCounter--; } else { if(_scanline >= 240 || !IsRenderingEnabled()) { if((_state.SpriteRamAddr & 0x03) == 0x02) { //"The three unimplemented bits of each sprite's byte 2 do not exist in the PPU and always read back as 0 on PPU revisions that allow reading PPU OAM through OAMDATA ($2004)" value &= 0xE3; } _spriteRAM[_state.SpriteRamAddr] = value; _state.SpriteRamAddr = (_state.SpriteRamAddr + 1) & 0xFF; } else { //"Writes to OAMDATA during rendering (on the pre-render line and the visible lines 0-239, provided either sprite or background rendering is enabled) do not modify values in OAM, //but do perform a glitchy increment of OAMADDR, bumping only the high 6 bits" _state.SpriteRamAddr += 4; } } break; case PPURegisters::ScrollOffsets: if(_state.WriteToggle) { _state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0x73E0) | ((value & 0xF8) << 2) | ((value & 0x07) << 12); } else { _state.XScroll = value & 0x07; _state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0x001F) | (value >> 3); } _state.WriteToggle = !_state.WriteToggle; break; case PPURegisters::VideoMemoryAddr: if(_state.WriteToggle) { _state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0x00FF) | value; _state.VideoRamAddr = _state.TmpVideoRamAddr; //Trigger memory read when setting the vram address - needed by MMC3 IRQ counter //"4) Should be clocked when A12 changes to 1 via $2006 write" _memoryManager->ReadVRAM(_state.VideoRamAddr); } else { _state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0xFF00) | ((value & 0x3F) << 8); } _state.WriteToggle = !_state.WriteToggle; break; case PPURegisters::VideoMemoryData: if(_state.VideoRamAddr >= 0x3F00) { WritePaletteRAM(_state.VideoRamAddr, value); } else { _memoryManager->WriteVRAM(_state.VideoRamAddr, value); } UpdateVideoRamAddr(); break; case PPURegisters::SpriteDMA: //_spriteDmaAddr & _spriteDmaCounter are probably not the correct solution for this //Missing something else in the PPU/CPU DMA logic maybe? _spriteDmaCounter = 0x100; _spriteDmaAddr = _state.SpriteRamAddr; CPU::RunDMATransfer(_spriteRAM, value); break; default: break; } } uint8_t PPU::ReadPaletteRAM(uint16_t addr) { addr &= 0x1F; if(addr == 0x10 || addr == 0x14 || addr == 0x18 || addr == 0x1C) { addr &= ~0x10; } return (_paletteRAM[addr] & _paletteRamMask); } void PPU::WritePaletteRAM(uint16_t addr, uint8_t value) { addr &= 0x1F; if(addr == 0x10 || addr == 0x14 || addr == 0x18 || addr == 0x1C) { addr &= ~0x10; } _paletteRAM[addr] = value; } bool PPU::IsRenderingEnabled() { return _flags.BackgroundEnabled || _flags.SpritesEnabled; } void PPU::SetControlRegister(uint8_t value) { _state.Control = value; uint8_t nameTable = (_state.Control & 0x03); _state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0x0C00) | (nameTable << 10); _flags.VerticalWrite = (_state.Control & 0x04) == 0x04; _flags.SpritePatternAddr = ((_state.Control & 0x08) == 0x08) ? 0x1000 : 0x0000; _flags.BackgroundPatternAddr = ((_state.Control & 0x10) == 0x10) ? 0x1000 : 0x0000; _flags.LargeSprites = (_state.Control & 0x20) == 0x20; //"By toggling NMI_output ($2000 bit 7) during vertical blank without reading $2002, a program can cause /NMI to be pulled low multiple times, causing multiple NMIs to be generated." bool originalVBlank = _flags.VBlank; _flags.VBlank = (_state.Control & 0x80) == 0x80; if(!originalVBlank && _flags.VBlank && _statusFlags.VerticalBlank && (_scanline != -1 || _cycle != 0)) { CPU::SetNMIFlag(); } if(_scanline == 241 && _cycle < 3 && !_flags.VBlank) { CPU::ClearNMIFlag(); } } void PPU::SetMaskRegister(uint8_t value) { _state.Mask = value; _flags.Grayscale = (_state.Mask & 0x01) == 0x01; _flags.BackgroundMask = (_state.Mask & 0x02) == 0x02; _flags.SpriteMask = (_state.Mask & 0x04) == 0x04; _flags.BackgroundEnabled = (_state.Mask & 0x08) == 0x08; _flags.SpritesEnabled = (_state.Mask & 0x10) == 0x10; _flags.IntensifyBlue = (_state.Mask & 0x80) == 0x80; //"Bit 0 controls a greyscale mode, which causes the palette to use only the colors from the grey column: $00, $10, $20, $30. This is implemented as a bitwise AND with $30 on any value read from PPU $3F00-$3FFF" _paletteRamMask = _flags.Grayscale ? 0x30 : 0x3F; if(_nesModel == NesModel::NTSC) { _flags.IntensifyRed = (_state.Mask & 0x20) == 0x20; _flags.IntensifyGreen = (_state.Mask & 0x40) == 0x40; _intensifyColorBits = (value & 0xE0) << 1; } else { //"Note that on the Dendy and PAL NES, the green and red bits swap meaning." _flags.IntensifyRed = (_state.Mask & 0x40) == 0x40; _flags.IntensifyGreen = (_state.Mask & 0x20) == 0x20; _intensifyColorBits = (_flags.IntensifyRed ? 0x40 : 0x00) | (_flags.IntensifyGreen ? 0x80 : 0x00) | (_flags.IntensifyBlue ? 0x100 : 0x00); } } void PPU::UpdateStatusFlag() { _state.Status = ((uint8_t)_statusFlags.SpriteOverflow << 5) | ((uint8_t)_statusFlags.Sprite0Hit << 6) | ((uint8_t)_statusFlags.VerticalBlank << 7); _statusFlags.VerticalBlank = false; if(_scanline == 241 && _cycle < 3) { //"Reading on the same PPU clock or one later reads it as set, clears it, and suppresses the NMI for that frame." _statusFlags.VerticalBlank = false; CPU::ClearNMIFlag(); if(_cycle == 0) { //"Reading one PPU clock before reads it as clear and never sets the flag or generates NMI for that frame. " _state.Status = ((uint8_t)_statusFlags.SpriteOverflow << 5) | ((uint8_t)_statusFlags.Sprite0Hit << 6); } } } //Taken from http://wiki.nesdev.com/w/index.php/The_skinny_on_NES_scrolling#Wrapping_around void PPU::IncVerticalScrolling() { uint16_t addr = _state.VideoRamAddr; if((addr & 0x7000) != 0x7000) { // if fine Y < 7 addr += 0x1000; // increment fine Y } else { // fine Y = 0 addr &= ~0x7000; int y = (addr & 0x03E0) >> 5; // let y = coarse Y if(y == 29) { y = 0; // coarse Y = 0 addr ^= 0x0800; // switch vertical nametable } else if(y == 31){ y = 0; // coarse Y = 0, nametable not switched } else { y++; // increment coarse Y } addr = (addr & ~0x03E0) | (y << 5); // put coarse Y back into v } _state.VideoRamAddr = addr; } //Taken from http://wiki.nesdev.com/w/index.php/The_skinny_on_NES_scrolling#Wrapping_around void PPU::IncHorizontalScrolling() { //Increase coarse X scrolling value. uint16_t addr = _state.VideoRamAddr; if((addr & 0x001F) == 31) { //When the value is 31, wrap around to 0 and switch nametable addr = (addr & ~0x001F) ^ 0x0400; } else { addr++; } _state.VideoRamAddr = addr; } //Taken from http://wiki.nesdev.com/w/index.php/The_skinny_on_NES_scrolling#Tile_and_attribute_fetching uint16_t PPU::GetNameTableAddr() { return 0x2000 | (_state.VideoRamAddr & 0x0FFF); } //Taken from http://wiki.nesdev.com/w/index.php/The_skinny_on_NES_scrolling#Tile_and_attribute_fetching uint16_t PPU::GetAttributeAddr() { return 0x23C0 | (_state.VideoRamAddr & 0x0C00) | ((_state.VideoRamAddr >> 4) & 0x38) | ((_state.VideoRamAddr >> 2) & 0x07); } void PPU::LoadTileInfo() { if(IsRenderingEnabled()) { uint16_t tileIndex, shift; switch((_cycle - 1) & 0x07) { case 0: _previousTile = _currentTile; _currentTile = _nextTile; if(_cycle > 1 && _cycle < 256) { LoadNextTile(); } tileIndex = _memoryManager->ReadVRAM(GetNameTableAddr()); _nextTile.TileAddr = (tileIndex << 4) | (_state.VideoRamAddr >> 12) | _flags.BackgroundPatternAddr; _nextTile.OffsetY = _state.VideoRamAddr >> 12; break; case 2: shift = ((_state.VideoRamAddr >> 4) & 0x04) | (_state.VideoRamAddr & 0x02); _nextTile.PaletteOffset = ((_memoryManager->ReadVRAM(GetAttributeAddr()) >> shift) & 0x03) << 2; break; case 3: _nextTile.LowByte = _memoryManager->ReadVRAM(_nextTile.TileAddr); break; case 5: _nextTile.HighByte = _memoryManager->ReadVRAM(_nextTile.TileAddr + 8); if(_cycle == 334) { InitializeShiftRegisters(); } break; } } } void PPU::LoadSpriteTileInfo() { uint32_t spriteAddr = _spriteIndex * 4; uint8_t spriteY = _secondarySpriteRAM[spriteAddr]; uint8_t tileIndex = _secondarySpriteRAM[spriteAddr + 1]; uint8_t attributes = _secondarySpriteRAM[spriteAddr + 2]; uint8_t spriteX = _secondarySpriteRAM[spriteAddr + 3]; bool backgroundPriority = (attributes & 0x20) == 0x20; bool horizontalMirror = (attributes & 0x40) == 0x40; bool verticalMirror = (attributes & 0x80) == 0x80; uint16_t tileAddr; uint8_t lineOffset; if(verticalMirror) { lineOffset = (_flags.LargeSprites ? 15 : 7) - (_scanline - spriteY); } else { lineOffset = _scanline - spriteY; } if(_flags.LargeSprites) { tileAddr = (((tileIndex & 0x01) ? 0x1000 : 0x0000) | ((tileIndex & ~0x01) << 4)) + (lineOffset >= 8 ? lineOffset + 8 : lineOffset); } else { tileAddr = ((tileIndex << 4) | _flags.SpritePatternAddr) + lineOffset; } if(_spriteIndex < _spriteCount && spriteY < 240) { _spriteTiles[_spriteIndex].BackgroundPriority = backgroundPriority; _spriteTiles[_spriteIndex].HorizontalMirror = horizontalMirror; _spriteTiles[_spriteIndex].VerticalMirror = verticalMirror; _spriteTiles[_spriteIndex].PaletteOffset = ((attributes & 0x03) << 2) | 0x10; _spriteTiles[_spriteIndex].LowByte = _memoryManager->ReadVRAM(tileAddr); _spriteTiles[_spriteIndex].HighByte = _memoryManager->ReadVRAM(tileAddr + 8); _spriteTiles[_spriteIndex].TileAddr = tileAddr; _spriteTiles[_spriteIndex].OffsetY = lineOffset; _spriteTiles[_spriteIndex].SpriteX = spriteX; } else { //Fetches to sprite 0xFF for remaining sprites/hidden - used by MMC3 IRQ counter lineOffset = 0; tileIndex = 0xFF; if(_flags.LargeSprites) { tileAddr = (((tileIndex & 0x01) ? 0x1000 : 0x0000) | ((tileIndex & ~0x01) << 4)) + (lineOffset >= 8 ? lineOffset + 8 : lineOffset); } else { tileAddr = ((tileIndex << 4) | _flags.SpritePatternAddr) + lineOffset; } _memoryManager->ReadVRAM(tileAddr); _memoryManager->ReadVRAM(tileAddr + 8); } _spriteIndex++; } void PPU::LoadNextTile() { _state.LowBitShift |= _nextTile.LowByte; _state.HighBitShift |= _nextTile.HighByte; } void PPU::InitializeShiftRegisters() { _state.LowBitShift = (_currentTile.LowByte << 8) | _nextTile.LowByte; _state.HighBitShift = (_currentTile.HighByte << 8) | _nextTile.HighByte; } void PPU::ShiftTileRegisters() { _state.LowBitShift <<= 1; _state.HighBitShift <<= 1; } uint32_t PPU::GetPixelColor(uint32_t &paletteOffset) { uint8_t offset = _state.XScroll; uint32_t backgroundColor = 0; if((_cycle > 8 || _flags.BackgroundMask) && _flags.BackgroundEnabled) { //BackgroundMask = false: Hide background in leftmost 8 pixels of screen backgroundColor = (((_state.LowBitShift << offset) & 0x8000) >> 15) | (((_state.HighBitShift << offset) & 0x8000) >> 14); } if((_cycle > 8 || _flags.SpriteMask) && _flags.SpritesEnabled) { //SpriteMask = true: Hide sprites in leftmost 8 pixels of screen for(uint8_t i = 0; i < _spriteCount; i++) { int32_t shift = -((int32_t)_spriteTiles[i].SpriteX - (int32_t)_cycle + 1); if(shift >= 0 && shift < 8) { _lastSprite = &_spriteTiles[i]; uint32_t spriteColor; if(_spriteTiles[i].HorizontalMirror) { spriteColor = ((_lastSprite->LowByte >> shift) & 0x01) | ((_lastSprite->HighByte >> shift) & 0x01) << 1; } else { spriteColor = ((_lastSprite->LowByte << shift) & 0x80) >> 7 | ((_lastSprite->HighByte << shift) & 0x80) >> 6; } if(spriteColor != 0) { //First sprite without a 00 color, use it. if(i == 0 && backgroundColor != 0 && _sprite0Visible && _cycle != 256 && _flags.BackgroundEnabled) { //"The hit condition is basically sprite zero is in range AND the first sprite output unit is outputting a non-zero pixel AND the background drawing unit is outputting a non-zero pixel." //"Sprite zero hits do not register at x=255" (cycle 256) //"... provided that background and sprite rendering are both enabled" //"Should always miss when Y >= 239" _statusFlags.Sprite0Hit = true; } if(backgroundColor == 0 || !_spriteTiles[i].BackgroundPriority) { //Check sprite priority paletteOffset = _lastSprite->PaletteOffset; return spriteColor; } break; } } } } paletteOffset = ((offset + ((_cycle - 1) & 0x07) < 8) ? _previousTile : _currentTile).PaletteOffset; return backgroundColor; } void PPU::DrawPixel() { //This is called 3.7 million times per second - needs to be as fast as possible. uint16_t &pixel = _currentOutputBuffer[(_scanline << 8) + _cycle - 1]; if(IsRenderingEnabled() || ((_state.VideoRamAddr & 0x3F00) != 0x3F00)) { uint32_t paletteOffset; uint32_t color = GetPixelColor(paletteOffset); if(color == 0) { pixel = ReadPaletteRAM(0x3F00) | _intensifyColorBits; } else { pixel = ReadPaletteRAM(0x3F00 + paletteOffset + color) | _intensifyColorBits; } } else { //"If the current VRAM address points in the range $3F00-$3FFF during forced blanking, the color indicated by this palette location will be shown on screen instead of the backdrop color." pixel = ReadPaletteRAM(_state.VideoRamAddr) | _intensifyColorBits; } } void PPU::ProcessPreVBlankScanline() { //For pre-render scanline & all visible scanlines if(IsRenderingEnabled()) { //Update video ram address according to scrolling logic if((_cycle > 0 && _cycle < 256 && (_cycle & 0x07) == 0) || _cycle == 328 || _cycle == 336) { IncHorizontalScrolling(); } else if(_cycle == 256) { IncVerticalScrolling(); } else if(_cycle == 257) { //copy horizontal scrolling value from t _state.VideoRamAddr = (_state.VideoRamAddr & ~0x041F) | (_state.TmpVideoRamAddr & 0x041F); } } if(_cycle >= 257 && _cycle <= 320) { if(IsRenderingEnabled()) { //"OAMADDR is set to 0 during each of ticks 257-320 (the sprite tile loading interval) of the pre-render and visible scanlines." (When rendering) _state.SpriteRamAddr = 0; if((_cycle - 260) % 8 == 0) { //Cycle 260, 268, etc. This is an approximation (each tile is actually loaded in 8 steps (e.g from 257 to 264)) LoadSpriteTileInfo(); } else if(_cycle == 257) { _spriteIndex = 0; } } } else if(_cycle == 321 && IsRenderingEnabled()) { _oamCopybuffer = _secondarySpriteRAM[0]; } } void PPU::ProcessPrerenderScanline() { ProcessPreVBlankScanline(); if(_cycle == 0 && _state.SpriteRamAddr >= 0x08) { //"If OAMADDR is not less than eight when rendering starts, the eight bytes starting at OAMADDR & 0xF8 are copied to the first eight bytes of OAM" memcpy(_spriteRAM, _spriteRAM + (_state.SpriteRamAddr & 0xF8), 8); } if(_cycle == 1) { _statusFlags.SpriteOverflow = false; _statusFlags.Sprite0Hit = false; _statusFlags.VerticalBlank = false; } if(_cycle >= 1 && _cycle <= 256) { LoadTileInfo(); } else if(_cycle >= 280 && _cycle <= 304) { if(IsRenderingEnabled()) { //copy vertical scrolling value from t _state.VideoRamAddr = (_state.VideoRamAddr & ~0x7BE0) | (_state.TmpVideoRamAddr & 0x7BE0); } } else if(_nesModel == NesModel::NTSC && _cycle == 338 && IsRenderingEnabled() && (_frameCount & 0x01)) { //Check for the cycle skip in the else if block below //If, at cycle 338 in the prerender scanline, rendering is enabled, we skip a tick (cycle 340) on the current frame _skipTick = true; } else if(_cycle == 339 && _skipTick) { //This behavior is NTSC-specific - PAL frames are always the same number of cycles //"With rendering enabled, each odd PPU frame is one PPU clock shorter than normal" (skip from 339 to 0, going over 340) _cycle = -1; _scanline = 0; _skipTick = false; } else if(_cycle >= 321 && _cycle <= 336) { LoadTileInfo(); } } void PPU::ProcessVisibleScanline() { if(_cycle > 0 && _cycle <= 256) { LoadTileInfo(); DrawPixel(); ShiftTileRegisters(); if(IsRenderingEnabled()) { CopyOAMData(); } } else if(_cycle >= 321 && _cycle <= 336) { LoadTileInfo(); } ProcessPreVBlankScanline(); } void PPU::CopyOAMData() { if(_cycle < 65) { //Clear secondary OAM at between cycle 0 and 64 _oamCopybuffer = 0xFF; _secondarySpriteRAM[_cycle >> 1] = _oamCopybuffer; } else { if(_cycle == 65) { _sprite0Added = false; _spriteInRange = false; _secondaryOAMAddr = 0; _oamCopyDone = false; _spriteAddrH = (_state.SpriteRamAddr >> 2) & 0x3F; _spriteAddrL = _state.SpriteRamAddr & 0x03; } else if(_cycle == 256) { _sprite0Visible = _sprite0Added; _spriteCount = (_secondaryOAMAddr >> 2); } if(_cycle & 0x01) { //Read a byte from the primary OAM on odd cycles _oamCopybuffer = _spriteRAM[(_spriteAddrH << 2) + _spriteAddrL]; } else { if(_oamCopyDone) { _spriteAddrH = (_spriteAddrH + 1) & 0x3F; } else { if(!_spriteInRange && _scanline >= _oamCopybuffer && _scanline < _oamCopybuffer + (_flags.LargeSprites ? 16 : 8)) { _spriteInRange = true; } if(_secondaryOAMAddr < 0x20) { //Copy 1 byte to secondary OAM _secondarySpriteRAM[_secondaryOAMAddr] = _oamCopybuffer; if(_spriteInRange) { _spriteAddrL++; _secondaryOAMAddr++; if(_spriteAddrH == 0) { _sprite0Added = true; } if(_spriteAddrL == 4) { //Done copying all 4 bytes _spriteInRange = false; _spriteAddrL = 0; _spriteAddrH = (_spriteAddrH + 1) & 0x3F; if(_spriteAddrH == 0) { _oamCopyDone = true; } } } else { //Nothing to copy, skip to next sprite _spriteAddrH = (_spriteAddrH + 1) & 0x3F; if(_spriteAddrH == 0) { _oamCopyDone = true; } } } else { //8 sprites have been found, check next sprite for overflow + emulate PPU bug if(_spriteInRange) { //Sprite is visible, consider this to be an overflow _statusFlags.SpriteOverflow = true; _spriteAddrL = (_spriteAddrL + 1) & 0x03; if(_spriteAddrL == 4) { _spriteInRange = false; _spriteAddrH = (_spriteAddrH + 1) & 0x3F; _oamCopyDone = true; _spriteAddrL = 0; } } else { //Sprite isn't on this scanline, trigger sprite evaluation bug - increment both H & L at the same time _spriteAddrH = (_spriteAddrH + 1) & 0x3F; _spriteAddrL = (_spriteAddrL + 1) & 0x03; if(_spriteAddrH == 0) { _oamCopyDone = true; } } } } } } } void PPU::SendFrame() { MessageManager::SendNotification(ConsoleNotificationType::PpuFrameDone, _currentOutputBuffer); if(VideoDecoder::GetInstance()->UpdateFrame(_currentOutputBuffer)) { _currentOutputBuffer = (_currentOutputBuffer == _outputBuffers[0]) ? _outputBuffers[1] : _outputBuffers[0]; } } void PPU::BeginVBlank() { if(_cycle == 0) { SendFrame(); _statusFlags.VerticalBlank = true; if(_flags.VBlank) { CPU::SetNMIFlag(); } } } void PPU::EndVBlank() { if(_cycle == 340) { _frameCount++; } } void PPU::Exec() { if(_cycle == 340) { _cycle = -1; if(_scanline++ == _vblankEnd) { _scanline = -1; } } _cycle++; if(_scanline != -1 && _scanline < 240) { ProcessVisibleScanline(); } else if(_scanline == -1) { ProcessPrerenderScanline(); } else if(_scanline == 241) { BeginVBlank(); } else if(_scanline == _vblankEnd) { EndVBlank(); } } void PPU::ExecStatic() { PPU::Instance->Exec(); PPU::Instance->Exec(); PPU::Instance->Exec(); if(PPU::Instance->_ignoreVramRead) { PPU::Instance->_ignoreVramRead--; } if(PPU::Instance->_nesModel == NesModel::PAL && CPU::GetCycleCount() % 5 == 0) { //PAL PPU runs 3.2 clocks for every CPU clock, so we need to run an extra clock every 5 CPU clocks PPU::Instance->Exec(); } } void PPU::StreamState(bool saving) { Stream(_state.Control); Stream(_state.Mask); Stream(_state.Status); Stream(_state.SpriteRamAddr); Stream(_state.VideoRamAddr); Stream(_state.XScroll); Stream(_state.TmpVideoRamAddr); Stream(_state.WriteToggle); Stream(_state.HighBitShift); Stream(_state.LowBitShift); Stream(_flags.VerticalWrite); Stream(_flags.SpritePatternAddr); Stream(_flags.BackgroundPatternAddr); Stream(_flags.LargeSprites); Stream(_flags.VBlank); Stream(_flags.Grayscale); Stream(_flags.BackgroundMask); Stream(_flags.SpriteMask); Stream(_flags.BackgroundEnabled); Stream(_flags.SpritesEnabled); Stream(_flags.IntensifyRed); Stream(_flags.IntensifyGreen); Stream(_flags.IntensifyBlue); Stream(_paletteRamMask); Stream(_intensifyColorBits); Stream(_statusFlags.SpriteOverflow); Stream(_statusFlags.Sprite0Hit); Stream(_statusFlags.VerticalBlank); Stream(_scanline); Stream(_cycle); Stream(_frameCount); Stream(_memoryReadBuffer); StreamArray(_paletteRAM, 0x20); StreamArray(_spriteRAM, 0x100); StreamArray(_secondarySpriteRAM, 0x20); Stream(_currentTile.LowByte); Stream(_currentTile.HighByte); Stream(_currentTile.PaletteOffset); Stream(_nextTile.LowByte); Stream(_nextTile.HighByte); Stream(_nextTile.PaletteOffset); Stream(_nextTile.TileAddr); Stream(_previousTile.LowByte); Stream(_previousTile.HighByte); Stream(_previousTile.PaletteOffset); for(int i = 0; i < 8; i++) { Stream(_spriteTiles[i].SpriteX); Stream(_spriteTiles[i].LowByte); Stream(_spriteTiles[i].HighByte); Stream(_spriteTiles[i].PaletteOffset); Stream(_spriteTiles[i].HorizontalMirror); Stream(_spriteTiles[i].BackgroundPriority); } Stream(_spriteIndex); Stream(_spriteCount); Stream(_secondaryOAMAddr); Stream(_sprite0Visible); Stream(_oamCopybuffer); Stream(_spriteInRange); Stream(_sprite0Added); Stream(_spriteAddrH); Stream(_spriteAddrL); Stream(_oamCopyDone); Stream(_nesModel); Stream(_spriteDmaAddr); Stream(_spriteDmaCounter); Stream(_skipTick); Stream(_openBus); StreamArray(_openBusDecayStamp, 8); Stream(_ignoreVramRead); if(!saving) { SetNesModel(_nesModel); } }