Mesen-X/Core/Debugger.cpp

571 lines
No EOL
16 KiB
C++

#include "stdafx.h"
#include <thread>
#include "MessageManager.h"
#include "Debugger.h"
#include "Console.h"
#include "BaseMapper.h"
#include "Disassembler.h"
#include "VideoDecoder.h"
#include "APU.h"
#include "CodeDataLogger.h"
Debugger* Debugger::Instance = nullptr;
Debugger::Debugger(shared_ptr<Console> console, shared_ptr<CPU> cpu, shared_ptr<PPU> ppu, shared_ptr<MemoryManager> memoryManager, shared_ptr<BaseMapper> mapper)
{
_romFilepath = Console::GetROMPath();
_console = console;
_cpu = cpu;
_ppu = ppu;
_memoryManager = memoryManager;
_mapper = mapper;
uint8_t *prgBuffer;
mapper->GetPrgCopy(&prgBuffer);
_disassembler.reset(new Disassembler(memoryManager->GetInternalRAM(), prgBuffer, mapper->GetPrgSize()));
_codeDataLogger.reset(new CodeDataLogger(mapper->GetPrgSize(), mapper->GetChrSize(false)));
_stepOut = false;
_stepCount = -1;
_stepOverAddr = -1;
_stepCycleCount = -1;
LoadCdlFile(FolderUtilities::CombinePath(FolderUtilities::GetDebuggerFolder(), FolderUtilities::GetFilename(_romFilepath, false) + ".cdl"));
Debugger::Instance = this;
}
Debugger::~Debugger()
{
SaveCdlFile(FolderUtilities::CombinePath(FolderUtilities::GetDebuggerFolder(), FolderUtilities::GetFilename(_romFilepath, false) + ".cdl"));
Run();
Console::Pause();
Debugger::Instance = nullptr;
Run();
_breakLock.Acquire();
_breakLock.Release();
Console::Resume();
}
bool Debugger::LoadCdlFile(string cdlFilepath)
{
if(_codeDataLogger->LoadCdlFile(cdlFilepath)) {
for(int i = 0, len = _mapper->GetPrgSize(); i < len; i++) {
if(_codeDataLogger->IsCode(i)) {
i = _disassembler->BuildCache(i, 0xFFFF) - 1;
}
}
return true;
}
return false;
}
bool Debugger::SaveCdlFile(string cdlFilepath)
{
return _codeDataLogger->SaveCdlFile(cdlFilepath);
}
void Debugger::ResetCdlLog()
{
_codeDataLogger->Reset();
}
CdlRatios Debugger::GetCdlRatios()
{
return _codeDataLogger->GetRatios();
}
void Debugger::AddBreakpoint(BreakpointType type, uint32_t address, bool isAbsoluteAddr, bool enabled)
{
_bpLock.Acquire();
if(isAbsoluteAddr) {
address = _mapper->ToAbsoluteAddress(address);
}
shared_ptr<Breakpoint> breakpoint(new Breakpoint(type, address, isAbsoluteAddr));
breakpoint->SetEnabled(enabled);
switch(type) {
case BreakpointType::Execute: _execBreakpoints.push_back(breakpoint); break;
case BreakpointType::Read: _readBreakpoints.push_back(breakpoint); break;
case BreakpointType::Write: _writeBreakpoints.push_back(breakpoint); break;
}
_bpLock.Release();
}
void Debugger::RemoveBreakpoint(BreakpointType type, uint32_t address, bool isAbsoluteAddr)
{
_bpLock.Acquire();
vector<shared_ptr<Breakpoint>> *breakpoints = nullptr;
switch(type) {
case BreakpointType::Execute: breakpoints = &_execBreakpoints; break;
case BreakpointType::Read: breakpoints = &_readBreakpoints; break;
case BreakpointType::Write: breakpoints = &_writeBreakpoints; break;
}
shared_ptr<Breakpoint> breakpoint = GetMatchingBreakpoint(type, address);
for(size_t i = 0, len = breakpoints->size(); i < len; i++) {
shared_ptr<Breakpoint> breakpoint = (*breakpoints)[i];
if(breakpoint->GetAddr() == address && breakpoint->IsAbsoluteAddr() == isAbsoluteAddr) {
breakpoints->erase(breakpoints->begin() + i);
break;
}
}
_bpLock.Release();
}
shared_ptr<Breakpoint> Debugger::GetMatchingBreakpoint(BreakpointType type, uint32_t addr)
{
uint32_t absoluteAddr = _mapper->ToAbsoluteAddress(addr);
vector<shared_ptr<Breakpoint>> *breakpoints = nullptr;
switch(type) {
case BreakpointType::Execute: breakpoints = &_execBreakpoints; break;
case BreakpointType::Read: breakpoints = &_readBreakpoints; break;
case BreakpointType::Write: breakpoints = &_writeBreakpoints; break;
}
_bpLock.Acquire();
for(size_t i = 0, len = breakpoints->size(); i < len; i++) {
shared_ptr<Breakpoint> breakpoint = (*breakpoints)[i];
if(breakpoint->Matches(addr, absoluteAddr)) {
_bpLock.Release();
return breakpoint;
}
}
_bpLock.Release();
return shared_ptr<Breakpoint>();
}
void Debugger::UpdateCallstack(uint32_t addr)
{
if(_lastInstruction == 0x60 && !_callstackRelative.empty()) {
//RTS
_callstackRelative.pop_back();
_callstackRelative.pop_back();
_callstackAbsolute.pop_back();
_callstackAbsolute.pop_back();
} else if(_lastInstruction == 0x20 && _callstackRelative.size() < 1022) {
//JSR
uint16_t targetAddr = _memoryManager->DebugRead(addr + 1) | (_memoryManager->DebugRead(addr + 2) << 8);
_callstackRelative.push_back(addr);
_callstackRelative.push_back(targetAddr);
_callstackAbsolute.push_back(_mapper->ToAbsoluteAddress(addr));
_callstackAbsolute.push_back(_mapper->ToAbsoluteAddress(targetAddr));
}
}
void Debugger::ProcessStepConditions(uint32_t addr)
{
if(_stepOut && _lastInstruction == 0x60) {
//RTS found, set StepCount to 2 to break on the following instruction
Step(2);
} else if(_stepOverAddr != -1 && addr == (uint32_t)_stepOverAddr) {
Step(1);
} else if(_stepCycleCount != -1 && abs(_cpu->GetCycleCount() - _stepCycleCount) < 100 && _cpu->GetCycleCount() >= _stepCycleCount) {
Step(1);
}
}
void Debugger::BreakOnBreakpoint(MemoryOperationType type, uint32_t addr)
{
BreakpointType breakpointType;
switch(type) {
case MemoryOperationType::Read: breakpointType = BreakpointType::Read; break;
case MemoryOperationType::Write: breakpointType = BreakpointType::Write; break;
default:
case MemoryOperationType::ExecOpCode:
case MemoryOperationType::ExecOperand: breakpointType = BreakpointType::Execute; break;
}
if(GetMatchingBreakpoint(breakpointType, addr)) {
//Found a matching breakpoint, stop execution
Step(1);
SleepUntilResume();
}
}
void Debugger::PrivateProcessRamOperation(MemoryOperationType type, uint16_t &addr)
{
_breakLock.Acquire();
_currentReadAddr = &addr;
//Check if a breakpoint has been hit and freeze execution if one has
bool breakDone = false;
int32_t absoluteAddr = _mapper->ToAbsoluteAddress(addr);
if(absoluteAddr >= 0) {
if(type == MemoryOperationType::ExecOpCode) {
_codeDataLogger->SetFlag(absoluteAddr, CdlPrgFlags::Code);
_disassembler->BuildCache(absoluteAddr, addr);
_lastInstruction = _memoryManager->DebugRead(addr);
UpdateCallstack(addr);
ProcessStepConditions(addr);
breakDone = SleepUntilResume();
} else if(type == MemoryOperationType::ExecOperand) {
_codeDataLogger->SetFlag(absoluteAddr, CdlPrgFlags::Code);
} else {
_codeDataLogger->SetFlag(absoluteAddr, CdlPrgFlags::Data);
}
}
if(!breakDone) {
BreakOnBreakpoint(type, addr);
}
_currentReadAddr = nullptr;
_breakLock.Release();
}
bool Debugger::SleepUntilResume()
{
int32_t stepCount = _stepCount.load();
if(stepCount > 0) {
_stepCount--;
stepCount = _stepCount.load();
}
if(stepCount == 0) {
//Break
APU::StopAudio();
MessageManager::SendNotification(ConsoleNotificationType::CodeBreak);
_stepOverAddr = -1;
while(stepCount == 0) {
std::this_thread::sleep_for(std::chrono::duration<int, std::milli>(10));
stepCount = _stepCount.load();
}
return true;
}
return false;
}
void Debugger::PrivateProcessVramOperation(MemoryOperationType type, uint16_t addr)
{
int32_t absoluteAddr = _mapper->ToAbsoluteChrAddress(addr);
_codeDataLogger->SetFlag(absoluteAddr, type == MemoryOperationType::Read ? CdlChrFlags::Read : CdlChrFlags::Drawn);
}
void Debugger::GetState(DebugState *state)
{
state->CPU = _cpu->GetState();
state->PPU = _ppu->GetState();
}
void Debugger::Step(uint32_t count)
{
//Run CPU for [count] INSTRUCTIONS and before breaking again
_stepOut = false;
_stepCount = count;
_stepOverAddr = -1;
_stepCycleCount = -1;
}
void Debugger::StepCycles(uint32_t count)
{
//Run CPU for [count] CYCLES and before breaking again
_stepCycleCount = _cpu->GetCycleCount() + count;
Run();
}
void Debugger::StepOut()
{
_stepOut = true;
_stepCount = -1;
_stepOverAddr = -1;
_stepCycleCount = -1;
}
void Debugger::StepOver()
{
if(_lastInstruction == 0x20 || _lastInstruction == 0x00) {
//We are on a JSR/BRK instruction, need to continue until the following instruction
_stepOverAddr = _cpu->GetState().PC + (_lastInstruction == 0x20 ? 3 : 1);
Run();
} else {
//Except for JSR & BRK, StepOver behaves the same as StepTnto
Step(1);
}
}
void Debugger::Run()
{
//Resume execution after a breakpoint has been hit
_stepCount = -1;
}
bool Debugger::IsCodeChanged()
{
string output = GenerateOutput();
if(_outputCache.compare(output) == 0) {
return false;
} else {
_outputCache = output;
return true;
}
}
string Debugger::GenerateOutput()
{
std::ostringstream output;
vector<int32_t> memoryRanges = _mapper->GetPRGRanges();
//RAM code viewer doesn't work well yet
//output << _disassembler->GetRAMCode();
uint16_t memoryAddr = 0x8000;
for(size_t i = 0, size = memoryRanges.size(); i < size; i += 2) {
int32_t startRange = memoryRanges[i];
//Merge all sequential ranges into 1 chunk
for(size_t j = i+1; j < size - 1; j+=2) {
if(memoryRanges[j] + 1 == memoryRanges[j + 1]) {
i+=2;
} else {
break;
}
}
if(startRange != -1) {
output << _disassembler->GetCode(startRange, memoryRanges[i+1], memoryAddr);
} else {
memoryAddr += 0x100;
}
}
return output.str();
}
string* Debugger::GetCode()
{
return &_outputCache;
}
uint8_t Debugger::GetMemoryValue(uint32_t addr)
{
return _memoryManager->DebugRead(addr);
}
uint32_t Debugger::GetRelativeAddress(uint32_t addr)
{
return _mapper->FromAbsoluteAddress(addr);
}
void Debugger::SetNextStatement(uint16_t addr)
{
if(_currentReadAddr) {
_cpu->SetDebugPC(addr);
*_currentReadAddr = addr;
}
}
void Debugger::ProcessRamOperation(MemoryOperationType type, uint16_t &addr)
{
if(Debugger::Instance) {
Debugger::Instance->PrivateProcessRamOperation(type, addr);
}
}
void Debugger::ProcessVramOperation(MemoryOperationType type, uint16_t addr)
{
if(Debugger::Instance) {
Debugger::Instance->PrivateProcessVramOperation(type, addr);
}
}
uint32_t Debugger::GetMemoryState(DebugMemoryType type, uint8_t *buffer)
{
switch(type) {
case DebugMemoryType::CpuMemory:
for(int i = 0; i <= 0xFFFF; i++) {
buffer[i] = _memoryManager->DebugRead(i);
}
return 0x10000;
case DebugMemoryType::PpuMemory:
for(int i = 0; i <= 0x3FFF; i++) {
buffer[i] = _memoryManager->DebugReadVRAM(i);
}
return 0x4000;
case DebugMemoryType::PaletteMemory:
for(int i = 0; i <= 0x1F; i++) {
buffer[i] = _ppu->ReadPaletteRAM(i);
}
return 0x20;
case DebugMemoryType::SpriteMemory:
memcpy(buffer, _ppu->GetSpriteRam(), 0x100);
return 0x100;
case DebugMemoryType::SecondarySpriteMemory:
memcpy(buffer, _ppu->GetSecondarySpriteRam(), 0x20);
return 0x20;
case DebugMemoryType::PrgRom:
uint8_t *prgRom;
_mapper->GetPrgCopy(&prgRom);
memcpy(buffer, prgRom, _mapper->GetPrgSize());
delete[] prgRom;
return _mapper->GetPrgSize();
case DebugMemoryType::ChrRom:
uint8_t *chrRom;
_mapper->GetChrCopy(&chrRom);
memcpy(buffer, chrRom, _mapper->GetChrSize());
delete[] chrRom;
return _mapper->GetChrSize();
}
return 0;
}
void Debugger::GetNametable(int nametableIndex, uint32_t* frameBuffer, uint8_t* tileData, uint8_t* paletteData)
{
uint16_t *screenBuffer = new uint16_t[256 * 240];
uint16_t bgAddr = _ppu->GetState().ControlFlags.BackgroundPatternAddr;
uint16_t baseAddr = 0x2000 + nametableIndex * 0x400;
uint16_t baseAttributeAddr = baseAddr + 960;
for(uint8_t y = 0; y < 30; y++) {
for(uint8_t x = 0; x < 32; x++) {
uint8_t tileIndex = _mapper->ReadVRAM(baseAddr + (y << 5) + x);
uint8_t attribute = _mapper->ReadVRAM(baseAttributeAddr + ((y & 0xFC) << 1) + (x >> 2));
tileData[y * 30 + x] = tileIndex;
paletteData[y * 30 + x] = attribute;
uint8_t shift = (x & 0x02) | ((y & 0x02) << 1);
uint8_t paletteBaseAddr = ((attribute >> shift) & 0x03) << 2;
uint16_t tileAddr = bgAddr + (tileIndex << 4);
for(uint8_t i = 0; i < 8; i++) {
uint8_t lowByte = _mapper->ReadVRAM(tileAddr + i);
uint8_t highByte = _mapper->ReadVRAM(tileAddr + i + 8);
for(uint8_t j = 0; j < 8; j++) {
uint8_t color = ((lowByte >> (7 - j)) & 0x01) | (((highByte >> (7 - j)) & 0x01) << 1);
screenBuffer[(y<<11)+(x<<3)+(i<<8)+j] = color == 0 ? _ppu->ReadPaletteRAM(0) : _ppu->ReadPaletteRAM(paletteBaseAddr + color);
}
}
}
}
VideoDecoder::GetInstance()->DebugDecodeFrame(screenBuffer, frameBuffer, 256*240);
delete[] screenBuffer;
}
void Debugger::GetChrBank(int bankIndex, uint32_t* frameBuffer, uint8_t palette)
{
uint16_t *screenBuffer = new uint16_t[128 * 128];
uint16_t bgAddr = bankIndex == 0 ? 0x0000 : 0x1000;
for(uint8_t y = 0; y < 16; y++) {
for(uint8_t x = 0; x < 16; x++) {
uint8_t tileIndex = y * 16 + x;
uint8_t paletteBaseAddr = palette << 2;
uint16_t tileAddr = bgAddr + (tileIndex << 4);
for(uint8_t i = 0; i < 8; i++) {
uint8_t lowByte = _mapper->ReadVRAM(tileAddr + i);
uint8_t highByte = _mapper->ReadVRAM(tileAddr + i + 8);
for(uint8_t j = 0; j < 8; j++) {
uint8_t color = ((lowByte >> (7 - j)) & 0x01) | (((highByte >> (7 - j)) & 0x01) << 1);
screenBuffer[(y<<10)+(x<<3)+(i<<7)+j] = color == 0 ? _ppu->ReadPaletteRAM(0) : _ppu->ReadPaletteRAM(paletteBaseAddr + color);
}
}
}
}
VideoDecoder::GetInstance()->DebugDecodeFrame(screenBuffer, frameBuffer, 128*128);
delete[] screenBuffer;
}
void Debugger::GetSprites(uint32_t* frameBuffer)
{
uint16_t *screenBuffer = new uint16_t[64 * 128];
memset(screenBuffer, 0, 64*128*sizeof(uint16_t));
uint8_t *spriteRam = _ppu->GetSpriteRam();
uint16_t spriteAddr = _ppu->GetState().ControlFlags.SpritePatternAddr;
bool largeSprites = _ppu->GetState().ControlFlags.LargeSprites;
for(uint8_t y = 0; y < 8; y++) {
for(uint8_t x = 0; x < 8; x++) {
uint8_t ramAddr = ((y << 3) + x) << 2;
uint8_t tileIndex = spriteRam[ramAddr + 1];
uint8_t attributes = spriteRam[ramAddr + 2];
bool verticalMirror = (attributes & 0x80) == 0x80;
bool horizontalMirror = (attributes & 0x40) == 0x40;
uint16_t tileAddr;
if(largeSprites) {
tileAddr = (tileIndex & 0x01 ? 0x1000 : 0x0000) + ((tileIndex & 0xFE) << 4);
} else {
tileAddr = spriteAddr + (tileIndex << 4);
}
uint8_t palette = 0x10 + ((attributes & 0x03) << 2);
for(uint8_t i = 0, iMax = largeSprites ? 16 : 8; i < iMax; i++) {
if(i == 8) {
//Move to next tile for 2nd tile of 8x16 sprites
tileAddr += 8;
}
uint8_t lowByte = _mapper->ReadVRAM(tileAddr + i);
uint8_t highByte = _mapper->ReadVRAM(tileAddr + i + 8);
for(uint8_t j = 0; j < 8; j++) {
uint8_t color;
if(horizontalMirror) {
color = ((lowByte >> j) & 0x01) | (((highByte >> j) & 0x01) << 1);
} else {
color = ((lowByte >> (7 - j)) & 0x01) | (((highByte >> (7 - j)) & 0x01) << 1);
}
uint16_t destAddr;
if(verticalMirror) {
destAddr = (y << 10) + (x << 3) + (((largeSprites ? 15 : 7) - i) << 6) + j;
} else {
destAddr = (y << 10) + (x << 3) + (i << 6) + j;
}
screenBuffer[destAddr] = color == 0 ? _ppu->ReadPaletteRAM(0) : _ppu->ReadPaletteRAM(palette + color);
}
}
}
}
VideoDecoder::GetInstance()->DebugDecodeFrame(screenBuffer, frameBuffer, 64*128);
delete[] screenBuffer;
}
void Debugger::GetPalette(uint32_t* frameBuffer)
{
uint16_t *screenBuffer = new uint16_t[4*8];
for(uint8_t i = 0; i < 32; i++) {
screenBuffer[i] = _ppu->ReadPaletteRAM(i);
}
VideoDecoder::GetInstance()->DebugDecodeFrame(screenBuffer, frameBuffer, 4*8);
delete[] screenBuffer;
}
void Debugger::GetCallstack(int32_t* callstackAbsolute, int32_t* callstackRelative)
{
for(size_t i = 0, len = _callstackRelative.size(); i < len; i++) {
callstackAbsolute[i] = _callstackAbsolute[i];
int32_t relativeAddr = _callstackRelative[i];
if(_mapper->FromAbsoluteAddress(_callstackAbsolute[i]) == -1) {
//Mark address as an unmapped memory addr
relativeAddr |= 0x10000;
}
callstackRelative[i] = relativeAddr;
}
callstackAbsolute[_callstackRelative.size()] = -2;
callstackRelative[_callstackRelative.size()] = -2;
}