Signal-Android/app/src/main/res/raw/lottie_stickers_splash.json
2020-01-06 11:08:30 -05:00

1 line
No EOL
191 KiB
JSON

{"v":"5.5.2","fr":60,"ip":0,"op":140,"w":1125,"h":1500,"nm":"Comp 1","ddd":0,"assets":[{"id":"image_0","w":513,"h":513,"u":"","p":"","e":1},{"id":"image_1","w":513,"h":513,"u":"","p":"","e":1}],"layers":[{"ddd":0,"ind":1,"ty":2,"nm":"Main","refId":"image_0","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[548.5,1066,0],"ix":2},"a":{"a":0,"k":[256.5,256.5,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":93,"s":[0,0,100]},{"t":101,"s":[100,100,100]}],"ix":6,"x":"var $bm_rt;\nvar e, g, nMax, n, n, t, v, vl, vu, vu, tCur, segDur, tNext, nb, delta;\ne = 0.2;\ng = 2100;\nnMax = 5;\n$bm_rt = n = 0;\nif (numKeys > 0) {\n $bm_rt = n = nearestKey(time).index;\n if (key(n).time > time)\n n--;\n}\nif (n > 0) {\n t = $bm_sub(time, key(n).time);\n v = $bm_mul($bm_neg(velocityAtTime($bm_sub(key(n).time, 0.001))), e);\n vl = length(v);\n if ($bm_isInstanceOfArray(value)) {\n vu = vl > 0 ? normalize(v) : [\n 0,\n 0,\n 0\n ];\n } else {\n vu = v < 0 ? -1 : 1;\n }\n tCur = 0;\n segDur = $bm_div($bm_mul(2, vl), g);\n tNext = segDur;\n nb = 1;\n while (tNext < t && nb <= nMax) {\n vl *= e;\n segDur *= e;\n tCur = tNext;\n tNext = $bm_sum(tNext, segDur);\n nb++;\n }\n if (nb <= nMax) {\n delta = $bm_sub(t, tCur);\n $bm_rt = $bm_sum(value, $bm_mul($bm_mul(vu, delta), $bm_sub(vl, $bm_div($bm_mul(g, delta), 2))));\n } else {\n $bm_rt = value;\n }\n} else\n $bm_rt = value;"}},"ao":0,"ip":0,"op":141,"st":0,"cp":false,"bm":0},{"ddd":0,"ind":2,"ty":2,"nm":"Accent","refId":"image_1","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[548.5,1066,0],"ix":2},"a":{"a":0,"k":[256.5,256.5,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":97,"s":[0,0,100]},{"t":105,"s":[100,100,100]}],"ix":6,"x":"var $bm_rt;\nvar e, g, nMax, n, n, t, v, vl, vu, vu, tCur, segDur, tNext, nb, delta;\ne = 0.2;\ng = 2100;\nnMax = 5;\n$bm_rt = n = 0;\nif (numKeys > 0) {\n $bm_rt = n = nearestKey(time).index;\n if (key(n).time > time)\n n--;\n}\nif (n > 0) {\n t = $bm_sub(time, key(n).time);\n v = $bm_mul($bm_neg(velocityAtTime($bm_sub(key(n).time, 0.001))), e);\n vl = length(v);\n if ($bm_isInstanceOfArray(value)) {\n vu = vl > 0 ? normalize(v) : [\n 0,\n 0,\n 0\n ];\n } else {\n vu = v < 0 ? -1 : 1;\n }\n tCur = 0;\n segDur = $bm_div($bm_mul(2, vl), g);\n tNext = segDur;\n nb = 1;\n while (tNext < t && nb <= nMax) {\n vl *= e;\n segDur *= e;\n tCur = tNext;\n tNext = $bm_sum(tNext, segDur);\n nb++;\n }\n if (nb <= nMax) {\n delta = $bm_sub(t, tCur);\n $bm_rt = $bm_sum(value, $bm_mul($bm_mul(vu, delta), $bm_sub(vl, $bm_div($bm_mul(g, delta), 2))));\n } else {\n $bm_rt = value;\n }\n} else\n $bm_rt = value;"}},"ao":0,"ip":0,"op":141,"st":0,"cp":false,"bm":0},{"ddd":0,"ind":3,"ty":4,"nm":"Top Bubble","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":36,"s":[608.5,960,0],"to":[4.333,-12.333,0],"ti":[-4.333,12.333,0]},{"t":44,"s":[634.5,886,0]}],"ix":2,"x":"var $bm_rt;\nfunction doIt() {\n var easingEquation, val1, val2, val3;\n var ew_one = expoIn;\n var ew_two = expoOut;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n if (n < 2) {\n easingEquation = ew_one;\n } else if (n >= $bm_sub(numKeys, 1)) {\n easingEquation = ew_two;\n } else {\n return null;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n var t = $bm_sub(time, key1.time);\n var d = $bm_sub(key2.time, key1.time);\n var sX = key1[0];\n var eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n var sY = key1[1];\n var eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n var sZ = key1[2];\n var eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = easingEquation(t, sX, eX, d);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = easingEquation(t, sY, eY, d);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = easingEquation(t, sY, eY, d);\n val3 = easingEquation(t, sZ, eZ, d);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\nvar IN_EXPO_CORRECTION = 0.000976563;\nvar OUT_EXPO_CORRECTION = 1.000976563;\nvar s = 1.70158;\nvar p = 0.81;\nvar a = 50;\nfunction bounceOut(t, b, c, d) {\n if ((t /= d) < 1 / 2.75) {\n return $bm_sum($bm_mul(c, $bm_mul($bm_mul(7.5625, t), t)), b);\n } else if (t < 2 / 2.75) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul(7.5625, t -= 1.5 / 2.75), t), 0.75)), b);\n } else if (t < 2.5 / 2.75) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul(7.5625, t -= 2.25 / 2.75), t), 0.9375)), b);\n } else {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul(7.5625, t -= 2.625 / 2.75), t), 0.984375)), b);\n }\n}\nfunction bounceIn(t, b, c, d) {\n return $bm_sum($bm_sub(c, bounceOut($bm_sub(d, t), 0, c, d)), b);\n}\nfunction bounceInOut(t, b, c, d) {\n if (t < $bm_div(d, 2))\n return $bm_sum($bm_mul(bounceIn($bm_mul(t, 2), 0, c, d), 0.5), b);\n else\n return bounceOut(t * 2 - d, 0, c, d) * 0.5 + c * 0.5 + b;\n}\nfunction backIn(t, b, c, d) {\n return $bm_sum($bm_mul($bm_mul($bm_mul(c, t /= d), t), $bm_sub($bm_mul($bm_sum(s, 1), t), s)), b);\n}\nfunction backInOut(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_mul($bm_mul(t, t), $bm_sub($bm_mul($bm_sum(s *= 1.525, 1), t), s))), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul(t -= 2, t), $bm_sum($bm_mul($bm_sum(s *= 1.525, 1), t), s)), 2)), b);\n}\nfunction backOut(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul(t = t / d - 1, t), $bm_sum($bm_mul($bm_sum(s, 1), t), s)), 1)), b);\n}\nfunction circIn(t, b, c, d) {\n return $bm_sum($bm_mul($bm_neg(c), $bm_sub(Math.sqrt($bm_sub(1, $bm_mul(t /= d, t))), 1)), b);\n}\nfunction circInOut(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_div($bm_neg(c), 2), $bm_sub(Math.sqrt($bm_sub(1, $bm_mul(t, t))), 1)), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum(Math.sqrt($bm_sub(1, $bm_mul(t -= 2, t))), 1)), b);\n}\nfunction circOut(t, b, c, d) {\n return $bm_sum($bm_mul(c, Math.sqrt($bm_sub(1, $bm_mul(t = t / d - 1, t)))), b);\n}\nfunction elasticIn(t, b, c, d) {\n if (t == 0)\n return b;\n if ((t /= d) == 1)\n return $bm_sum(b, c);\n if (!p)\n p = $bm_mul(d, 0.3);\n if (!a || a < Math.abs(c)) {\n a = c;\n s = $bm_div(p, 4);\n } else\n s = $bm_mul($bm_div(p, $bm_mul(2, Math.PI)), Math.asin($bm_div(c, a)));\n return $bm_sum($bm_neg($bm_mul($bm_mul(a, Math.pow(2, $bm_mul(10, t -= 1))), Math.sin($bm_div($bm_mul($bm_sub($bm_mul(t, d), s), $bm_mul(2, Math.PI)), p)))), b);\n}\nfunction elasticInOut(t, b, c, d) {\n if (t == 0)\n return b;\n if ((t /= d / 2) == 2)\n return $bm_sum(b, c);\n if (!p)\n p = $bm_mul(d, 0.3 * 1.5);\n if (!a || a < Math.abs(c)) {\n a = c;\n s = $bm_div(p, 4);\n } else\n s = $bm_mul($bm_div(p, $bm_mul(2, Math.PI)), Math.asin($bm_div(c, a)));\n if (t < 1)\n return $bm_sum($bm_mul(-0.5, $bm_mul($bm_mul(a, Math.pow(2, $bm_mul(10, t -= 1))), Math.sin($bm_div($bm_mul($bm_sub($bm_mul(t, d), s), $bm_mul(2, Math.PI)), p)))), b);\n return $bm_sum($bm_sum($bm_mul($bm_mul($bm_mul(a, Math.pow(2, $bm_mul(-10, t -= 1))), Math.sin($bm_div($bm_mul($bm_sub($bm_mul(t, d), s), $bm_mul(2, Math.PI)), p))), 0.5), c), b);\n}\nfunction elasticOut(t, b, c, d) {\n if (t == 0)\n return b;\n if ((t /= d) == 1)\n return $bm_sum(b, c);\n if (!p)\n p = $bm_mul(d, 0.3);\n if (!a || a < Math.abs(c)) {\n a = c;\n s = $bm_div(p, 4);\n } else\n s = $bm_mul($bm_div(p, $bm_mul(2, Math.PI)), Math.asin($bm_div(c, a)));\n return $bm_sum($bm_sum($bm_mul($bm_mul(a, Math.pow(2, $bm_mul(-10, t))), Math.sin($bm_div($bm_mul($bm_sub($bm_mul(t, d), s), $bm_mul(2, Math.PI)), p))), c), b);\n}\nfunction expoIn(t, b, c, d) {\n return t == 0 ? b : c * (Math.pow(2, 10 * (t / d - 1)) - IN_EXPO_CORRECTION) + b;\n}\nfunction expoInOut(t, b, c, d) {\n var v;\n if ((t /= d / 2) < 1) {\n v = $bm_sub(Math.pow(2, $bm_mul(10, $bm_sub(t, 1))), IN_EXPO_CORRECTION);\n } else {\n v = $bm_sum($bm_sum($bm_neg(Math.pow(2, $bm_mul(-10, $bm_sub(t, 1)))), 2), IN_EXPO_CORRECTION);\n }\n return $bm_sum(b, $bm_mul($bm_div(v, 2), c));\n}\nfunction expoOut(t, b, c, d) {\n return t == d ? b + c : c * OUT_EXPO_CORRECTION * (-Math.pow(2, -10 * t / d) + 1) + b;\n}\nfunction quadIn(t, b, c, d) {\n return $bm_sum($bm_mul($bm_mul(c, t /= d), t), b);\n}\nfunction quadInOut(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_div(c, 2), t), t), b);\n return $bm_sum($bm_mul($bm_div($bm_neg(c), 2), $bm_sub($bm_mul(--t, $bm_sub(t, 2)), 1)), b);\n}\nfunction quadOut(t, b, c, d) {\n return $bm_sum($bm_mul($bm_mul($bm_neg(c), t /= d), $bm_sub(t, 2)), b);\n}\nfunction quartIn(t, b, c, d) {\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(c, t /= d), t), t), t), b);\n}\nfunction quartInOut(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div($bm_neg(c), 2), $bm_sub($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), 2)), b);\n}\nfunction quartOut(t, b, c, d) {\n return $bm_sum($bm_mul($bm_neg(c), $bm_sub($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), 1)), b);\n}\nfunction quintIn(t, b, c, d) {\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul(c, t /= d), t), t), t), t), b);\n}\nfunction quintInOut(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction quintOut(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction sineIn(t, b, c, d) {\n return $bm_sum($bm_sum($bm_mul($bm_neg(c), Math.cos($bm_mul($bm_div(t, d), $bm_div(Math.PI, 2)))), c), b);\n}\nfunction sineInOut(t, b, c, d) {\n return $bm_sum($bm_mul($bm_div($bm_neg(c), 2), $bm_sub(Math.cos($bm_div($bm_mul(Math.PI, t), d)), 1)), b);\n}\nfunction sineOut(t, b, c, d) {\n return $bm_sum($bm_mul(c, Math.sin($bm_mul($bm_div(t, d), $bm_div(Math.PI, 2)))), b);\n}\n$bm_rt = doIt() || value;"},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ty":"rc","d":1,"s":{"a":0,"k":[336,120],"ix":2},"p":{"a":0,"k":[0,0],"ix":3},"r":{"a":0,"k":39,"ix":4},"nm":"Rectangle Path 1","mn":"ADBE Vector Shape - Rect","hd":false},{"ty":"fl","c":{"a":0,"k":[0.909803921569,0.909803921569,0.909803921569,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[65.813,-744.164],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[94.346,94.346],"ix":3},"r":{"a":0,"k":18.5,"ix":6},"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":40,"s":[39]},{"t":42,"s":[0]}],"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Rectangle 1","np":3,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":0,"op":142,"st":0,"cp":true,"bm":0},{"ddd":0,"ind":4,"ty":4,"nm":"Middle Bubble","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":36,"s":[724.5,1202,0],"to":[4.333,-12.333,0],"ti":[-4.333,12.333,0]},{"t":44,"s":[750.5,1128,0]}],"ix":2,"x":"var $bm_rt;\nfunction doIt() {\n var easingEquation, val1, val2, val3;\n var ew_one = expoIn;\n var ew_two = expoOut;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n if (n < 2) {\n easingEquation = ew_one;\n } else if (n >= $bm_sub(numKeys, 1)) {\n easingEquation = ew_two;\n } else {\n return null;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n var t = $bm_sub(time, key1.time);\n var d = $bm_sub(key2.time, key1.time);\n var sX = key1[0];\n var eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n var sY = key1[1];\n var eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n var sZ = key1[2];\n var eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = easingEquation(t, sX, eX, d);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = easingEquation(t, sY, eY, d);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = easingEquation(t, sY, eY, d);\n val3 = easingEquation(t, sZ, eZ, d);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\nvar IN_EXPO_CORRECTION = 0.000976563;\nvar OUT_EXPO_CORRECTION = 1.000976563;\nvar s = 1.70158;\nvar p = 0.81;\nvar a = 50;\nfunction bounceOut(t, b, c, d) {\n if ((t /= d) < 1 / 2.75) {\n return $bm_sum($bm_mul(c, $bm_mul($bm_mul(7.5625, t), t)), b);\n } else if (t < 2 / 2.75) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul(7.5625, t -= 1.5 / 2.75), t), 0.75)), b);\n } else if (t < 2.5 / 2.75) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul(7.5625, t -= 2.25 / 2.75), t), 0.9375)), b);\n } else {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul(7.5625, t -= 2.625 / 2.75), t), 0.984375)), b);\n }\n}\nfunction bounceIn(t, b, c, d) {\n return $bm_sum($bm_sub(c, bounceOut($bm_sub(d, t), 0, c, d)), b);\n}\nfunction bounceInOut(t, b, c, d) {\n if (t < $bm_div(d, 2))\n return $bm_sum($bm_mul(bounceIn($bm_mul(t, 2), 0, c, d), 0.5), b);\n else\n return bounceOut(t * 2 - d, 0, c, d) * 0.5 + c * 0.5 + b;\n}\nfunction backIn(t, b, c, d) {\n return $bm_sum($bm_mul($bm_mul($bm_mul(c, t /= d), t), $bm_sub($bm_mul($bm_sum(s, 1), t), s)), b);\n}\nfunction backInOut(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_mul($bm_mul(t, t), $bm_sub($bm_mul($bm_sum(s *= 1.525, 1), t), s))), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul(t -= 2, t), $bm_sum($bm_mul($bm_sum(s *= 1.525, 1), t), s)), 2)), b);\n}\nfunction backOut(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul(t = t / d - 1, t), $bm_sum($bm_mul($bm_sum(s, 1), t), s)), 1)), b);\n}\nfunction circIn(t, b, c, d) {\n return $bm_sum($bm_mul($bm_neg(c), $bm_sub(Math.sqrt($bm_sub(1, $bm_mul(t /= d, t))), 1)), b);\n}\nfunction circInOut(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_div($bm_neg(c), 2), $bm_sub(Math.sqrt($bm_sub(1, $bm_mul(t, t))), 1)), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum(Math.sqrt($bm_sub(1, $bm_mul(t -= 2, t))), 1)), b);\n}\nfunction circOut(t, b, c, d) {\n return $bm_sum($bm_mul(c, Math.sqrt($bm_sub(1, $bm_mul(t = t / d - 1, t)))), b);\n}\nfunction elasticIn(t, b, c, d) {\n if (t == 0)\n return b;\n if ((t /= d) == 1)\n return $bm_sum(b, c);\n if (!p)\n p = $bm_mul(d, 0.3);\n if (!a || a < Math.abs(c)) {\n a = c;\n s = $bm_div(p, 4);\n } else\n s = $bm_mul($bm_div(p, $bm_mul(2, Math.PI)), Math.asin($bm_div(c, a)));\n return $bm_sum($bm_neg($bm_mul($bm_mul(a, Math.pow(2, $bm_mul(10, t -= 1))), Math.sin($bm_div($bm_mul($bm_sub($bm_mul(t, d), s), $bm_mul(2, Math.PI)), p)))), b);\n}\nfunction elasticInOut(t, b, c, d) {\n if (t == 0)\n return b;\n if ((t /= d / 2) == 2)\n return $bm_sum(b, c);\n if (!p)\n p = $bm_mul(d, 0.3 * 1.5);\n if (!a || a < Math.abs(c)) {\n a = c;\n s = $bm_div(p, 4);\n } else\n s = $bm_mul($bm_div(p, $bm_mul(2, Math.PI)), Math.asin($bm_div(c, a)));\n if (t < 1)\n return $bm_sum($bm_mul(-0.5, $bm_mul($bm_mul(a, Math.pow(2, $bm_mul(10, t -= 1))), Math.sin($bm_div($bm_mul($bm_sub($bm_mul(t, d), s), $bm_mul(2, Math.PI)), p)))), b);\n return $bm_sum($bm_sum($bm_mul($bm_mul($bm_mul(a, Math.pow(2, $bm_mul(-10, t -= 1))), Math.sin($bm_div($bm_mul($bm_sub($bm_mul(t, d), s), $bm_mul(2, Math.PI)), p))), 0.5), c), b);\n}\nfunction elasticOut(t, b, c, d) {\n if (t == 0)\n return b;\n if ((t /= d) == 1)\n return $bm_sum(b, c);\n if (!p)\n p = $bm_mul(d, 0.3);\n if (!a || a < Math.abs(c)) {\n a = c;\n s = $bm_div(p, 4);\n } else\n s = $bm_mul($bm_div(p, $bm_mul(2, Math.PI)), Math.asin($bm_div(c, a)));\n return $bm_sum($bm_sum($bm_mul($bm_mul(a, Math.pow(2, $bm_mul(-10, t))), Math.sin($bm_div($bm_mul($bm_sub($bm_mul(t, d), s), $bm_mul(2, Math.PI)), p))), c), b);\n}\nfunction expoIn(t, b, c, d) {\n return t == 0 ? b : c * (Math.pow(2, 10 * (t / d - 1)) - IN_EXPO_CORRECTION) + b;\n}\nfunction expoInOut(t, b, c, d) {\n var v;\n if ((t /= d / 2) < 1) {\n v = $bm_sub(Math.pow(2, $bm_mul(10, $bm_sub(t, 1))), IN_EXPO_CORRECTION);\n } else {\n v = $bm_sum($bm_sum($bm_neg(Math.pow(2, $bm_mul(-10, $bm_sub(t, 1)))), 2), IN_EXPO_CORRECTION);\n }\n return $bm_sum(b, $bm_mul($bm_div(v, 2), c));\n}\nfunction expoOut(t, b, c, d) {\n return t == d ? b + c : c * OUT_EXPO_CORRECTION * (-Math.pow(2, -10 * t / d) + 1) + b;\n}\nfunction quadIn(t, b, c, d) {\n return $bm_sum($bm_mul($bm_mul(c, t /= d), t), b);\n}\nfunction quadInOut(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_div(c, 2), t), t), b);\n return $bm_sum($bm_mul($bm_div($bm_neg(c), 2), $bm_sub($bm_mul(--t, $bm_sub(t, 2)), 1)), b);\n}\nfunction quadOut(t, b, c, d) {\n return $bm_sum($bm_mul($bm_mul($bm_neg(c), t /= d), $bm_sub(t, 2)), b);\n}\nfunction quartIn(t, b, c, d) {\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(c, t /= d), t), t), t), b);\n}\nfunction quartInOut(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div($bm_neg(c), 2), $bm_sub($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), 2)), b);\n}\nfunction quartOut(t, b, c, d) {\n return $bm_sum($bm_mul($bm_neg(c), $bm_sub($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), 1)), b);\n}\nfunction quintIn(t, b, c, d) {\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul(c, t /= d), t), t), t), t), b);\n}\nfunction quintInOut(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction quintOut(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction sineIn(t, b, c, d) {\n return $bm_sum($bm_sum($bm_mul($bm_neg(c), Math.cos($bm_mul($bm_div(t, d), $bm_div(Math.PI, 2)))), c), b);\n}\nfunction sineInOut(t, b, c, d) {\n return $bm_sum($bm_mul($bm_div($bm_neg(c), 2), $bm_sub(Math.cos($bm_div($bm_mul(Math.PI, t), d)), 1)), b);\n}\nfunction sineOut(t, b, c, d) {\n return $bm_sum($bm_mul(c, Math.sin($bm_mul($bm_div(t, d), $bm_div(Math.PI, 2)))), b);\n}\n$bm_rt = doIt() || value;"},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ty":"rc","d":1,"s":{"a":0,"k":[336,222.277],"ix":2},"p":{"a":0,"k":[0,0],"ix":3},"r":{"a":0,"k":39,"ix":4},"nm":"Rectangle Path 1","mn":"ADBE Vector Shape - Rect","hd":false},{"ty":"fl","c":{"a":0,"k":[0.909803921569,0.909803921569,0.909803921569,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[65.813,-744.164],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[94.346,94.346],"ix":3},"r":{"a":0,"k":18.516,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Rectangle 1","np":3,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":0,"op":142,"st":0,"cp":true,"bm":0},{"ddd":0,"ind":5,"ty":4,"nm":"Bottom Bubble","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":25,"s":[470.5,1374,0],"to":[4.333,-12.333,0],"ti":[-4.333,12.333,0]},{"t":44,"s":[496.5,1300,0]}],"ix":2,"x":"var $bm_rt;\nfunction doIt() {\n var easingEquation, val1, val2, val3;\n var ew_one = expoIn;\n var ew_two = expoOut;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n if (n < 2) {\n easingEquation = ew_one;\n } else if (n >= $bm_sub(numKeys, 1)) {\n easingEquation = ew_two;\n } else {\n return null;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n var t = $bm_sub(time, key1.time);\n var d = $bm_sub(key2.time, key1.time);\n var sX = key1[0];\n var eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n var sY = key1[1];\n var eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n var sZ = key1[2];\n var eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = easingEquation(t, sX, eX, d);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = easingEquation(t, sY, eY, d);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = easingEquation(t, sY, eY, d);\n val3 = easingEquation(t, sZ, eZ, d);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\nvar IN_EXPO_CORRECTION = 0.000976563;\nvar OUT_EXPO_CORRECTION = 1.000976563;\nvar s = 1.70158;\nvar p = 0.81;\nvar a = 50;\nfunction bounceOut(t, b, c, d) {\n if ((t /= d) < 1 / 2.75) {\n return $bm_sum($bm_mul(c, $bm_mul($bm_mul(7.5625, t), t)), b);\n } else if (t < 2 / 2.75) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul(7.5625, t -= 1.5 / 2.75), t), 0.75)), b);\n } else if (t < 2.5 / 2.75) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul(7.5625, t -= 2.25 / 2.75), t), 0.9375)), b);\n } else {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul(7.5625, t -= 2.625 / 2.75), t), 0.984375)), b);\n }\n}\nfunction bounceIn(t, b, c, d) {\n return $bm_sum($bm_sub(c, bounceOut($bm_sub(d, t), 0, c, d)), b);\n}\nfunction bounceInOut(t, b, c, d) {\n if (t < $bm_div(d, 2))\n return $bm_sum($bm_mul(bounceIn($bm_mul(t, 2), 0, c, d), 0.5), b);\n else\n return bounceOut(t * 2 - d, 0, c, d) * 0.5 + c * 0.5 + b;\n}\nfunction backIn(t, b, c, d) {\n return $bm_sum($bm_mul($bm_mul($bm_mul(c, t /= d), t), $bm_sub($bm_mul($bm_sum(s, 1), t), s)), b);\n}\nfunction backInOut(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_mul($bm_mul(t, t), $bm_sub($bm_mul($bm_sum(s *= 1.525, 1), t), s))), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul(t -= 2, t), $bm_sum($bm_mul($bm_sum(s *= 1.525, 1), t), s)), 2)), b);\n}\nfunction backOut(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul(t = t / d - 1, t), $bm_sum($bm_mul($bm_sum(s, 1), t), s)), 1)), b);\n}\nfunction circIn(t, b, c, d) {\n return $bm_sum($bm_mul($bm_neg(c), $bm_sub(Math.sqrt($bm_sub(1, $bm_mul(t /= d, t))), 1)), b);\n}\nfunction circInOut(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_div($bm_neg(c), 2), $bm_sub(Math.sqrt($bm_sub(1, $bm_mul(t, t))), 1)), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum(Math.sqrt($bm_sub(1, $bm_mul(t -= 2, t))), 1)), b);\n}\nfunction circOut(t, b, c, d) {\n return $bm_sum($bm_mul(c, Math.sqrt($bm_sub(1, $bm_mul(t = t / d - 1, t)))), b);\n}\nfunction elasticIn(t, b, c, d) {\n if (t == 0)\n return b;\n if ((t /= d) == 1)\n return $bm_sum(b, c);\n if (!p)\n p = $bm_mul(d, 0.3);\n if (!a || a < Math.abs(c)) {\n a = c;\n s = $bm_div(p, 4);\n } else\n s = $bm_mul($bm_div(p, $bm_mul(2, Math.PI)), Math.asin($bm_div(c, a)));\n return $bm_sum($bm_neg($bm_mul($bm_mul(a, Math.pow(2, $bm_mul(10, t -= 1))), Math.sin($bm_div($bm_mul($bm_sub($bm_mul(t, d), s), $bm_mul(2, Math.PI)), p)))), b);\n}\nfunction elasticInOut(t, b, c, d) {\n if (t == 0)\n return b;\n if ((t /= d / 2) == 2)\n return $bm_sum(b, c);\n if (!p)\n p = $bm_mul(d, 0.3 * 1.5);\n if (!a || a < Math.abs(c)) {\n a = c;\n s = $bm_div(p, 4);\n } else\n s = $bm_mul($bm_div(p, $bm_mul(2, Math.PI)), Math.asin($bm_div(c, a)));\n if (t < 1)\n return $bm_sum($bm_mul(-0.5, $bm_mul($bm_mul(a, Math.pow(2, $bm_mul(10, t -= 1))), Math.sin($bm_div($bm_mul($bm_sub($bm_mul(t, d), s), $bm_mul(2, Math.PI)), p)))), b);\n return $bm_sum($bm_sum($bm_mul($bm_mul($bm_mul(a, Math.pow(2, $bm_mul(-10, t -= 1))), Math.sin($bm_div($bm_mul($bm_sub($bm_mul(t, d), s), $bm_mul(2, Math.PI)), p))), 0.5), c), b);\n}\nfunction elasticOut(t, b, c, d) {\n if (t == 0)\n return b;\n if ((t /= d) == 1)\n return $bm_sum(b, c);\n if (!p)\n p = $bm_mul(d, 0.3);\n if (!a || a < Math.abs(c)) {\n a = c;\n s = $bm_div(p, 4);\n } else\n s = $bm_mul($bm_div(p, $bm_mul(2, Math.PI)), Math.asin($bm_div(c, a)));\n return $bm_sum($bm_sum($bm_mul($bm_mul(a, Math.pow(2, $bm_mul(-10, t))), Math.sin($bm_div($bm_mul($bm_sub($bm_mul(t, d), s), $bm_mul(2, Math.PI)), p))), c), b);\n}\nfunction expoIn(t, b, c, d) {\n return t == 0 ? b : c * (Math.pow(2, 10 * (t / d - 1)) - IN_EXPO_CORRECTION) + b;\n}\nfunction expoInOut(t, b, c, d) {\n var v;\n if ((t /= d / 2) < 1) {\n v = $bm_sub(Math.pow(2, $bm_mul(10, $bm_sub(t, 1))), IN_EXPO_CORRECTION);\n } else {\n v = $bm_sum($bm_sum($bm_neg(Math.pow(2, $bm_mul(-10, $bm_sub(t, 1)))), 2), IN_EXPO_CORRECTION);\n }\n return $bm_sum(b, $bm_mul($bm_div(v, 2), c));\n}\nfunction expoOut(t, b, c, d) {\n return t == d ? b + c : c * OUT_EXPO_CORRECTION * (-Math.pow(2, -10 * t / d) + 1) + b;\n}\nfunction quadIn(t, b, c, d) {\n return $bm_sum($bm_mul($bm_mul(c, t /= d), t), b);\n}\nfunction quadInOut(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_div(c, 2), t), t), b);\n return $bm_sum($bm_mul($bm_div($bm_neg(c), 2), $bm_sub($bm_mul(--t, $bm_sub(t, 2)), 1)), b);\n}\nfunction quadOut(t, b, c, d) {\n return $bm_sum($bm_mul($bm_mul($bm_neg(c), t /= d), $bm_sub(t, 2)), b);\n}\nfunction quartIn(t, b, c, d) {\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(c, t /= d), t), t), t), b);\n}\nfunction quartInOut(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div($bm_neg(c), 2), $bm_sub($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), 2)), b);\n}\nfunction quartOut(t, b, c, d) {\n return $bm_sum($bm_mul($bm_neg(c), $bm_sub($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), 1)), b);\n}\nfunction quintIn(t, b, c, d) {\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul(c, t /= d), t), t), t), t), b);\n}\nfunction quintInOut(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction quintOut(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction sineIn(t, b, c, d) {\n return $bm_sum($bm_sum($bm_mul($bm_neg(c), Math.cos($bm_mul($bm_div(t, d), $bm_div(Math.PI, 2)))), c), b);\n}\nfunction sineInOut(t, b, c, d) {\n return $bm_sum($bm_mul($bm_div($bm_neg(c), 2), $bm_sub(Math.cos($bm_div($bm_mul(Math.PI, t), d)), 1)), b);\n}\nfunction sineOut(t, b, c, d) {\n return $bm_sum($bm_mul(c, Math.sin($bm_mul($bm_div(t, d), $bm_div(Math.PI, 2)))), b);\n}\n$bm_rt = doIt() || value;"},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ty":"rc","d":1,"s":{"a":0,"k":[336,222.277],"ix":2},"p":{"a":0,"k":[0,0],"ix":3},"r":{"a":0,"k":39,"ix":4},"nm":"Rectangle Path 1","mn":"ADBE Vector Shape - Rect","hd":false},{"ty":"fl","c":{"a":0,"k":[0.909803921569,0.909803921569,0.909803921569,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[65.813,-744.164],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[94.346,94.346],"ix":3},"r":{"a":0,"k":18.516,"ix":6},"o":{"a":0,"k":39,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Rectangle 1","np":3,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":0,"op":142,"st":0,"cp":true,"bm":0},{"ddd":0,"ind":6,"ty":4,"nm":"New Bubble","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":39,"s":[0]},{"t":42,"s":[100]}],"ix":11,"x":"var $bm_rt;\nfunction easeandwizz_inoutExpo(t, b, c, d) {\n var CORRECTION = 0.000976563;\n var v;\n if ((t /= d / 2) < 1) {\n v = $bm_sub(Math.pow(2, $bm_mul(10, $bm_sub(t, 1))), CORRECTION);\n } else {\n v = $bm_sum($bm_sum($bm_neg(Math.pow(2, $bm_mul(-10, $bm_sub(t, 1)))), 2), CORRECTION);\n }\n return $bm_sum(b, $bm_mul($bm_div(v, 2), c));\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = easeandwizz_inoutExpo(t, sX, eX, d);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = easeandwizz_inoutExpo(t, sY, eY, d);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = easeandwizz_inoutExpo(t, sY, eY, d);\n val3 = easeandwizz_inoutExpo(t, sZ, eZ, d);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":25,"s":[402.5,1554,0],"to":[5.333,-12.667,0],"ti":[-5.333,12.667,0]},{"t":44,"s":[434.5,1478,0]}],"ix":2,"x":"var $bm_rt;\nfunction doIt() {\n var easingEquation, val1, val2, val3;\n var ew_one = expoIn;\n var ew_two = expoOut;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n if (n < 2) {\n easingEquation = ew_one;\n } else if (n >= $bm_sub(numKeys, 1)) {\n easingEquation = ew_two;\n } else {\n return null;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n var t = $bm_sub(time, key1.time);\n var d = $bm_sub(key2.time, key1.time);\n var sX = key1[0];\n var eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n var sY = key1[1];\n var eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n var sZ = key1[2];\n var eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = easingEquation(t, sX, eX, d);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = easingEquation(t, sY, eY, d);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = easingEquation(t, sY, eY, d);\n val3 = easingEquation(t, sZ, eZ, d);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\nvar IN_EXPO_CORRECTION = 0.000976563;\nvar OUT_EXPO_CORRECTION = 1.000976563;\nvar s = 1.70158;\nvar p = 0.81;\nvar a = 50;\nfunction bounceOut(t, b, c, d) {\n if ((t /= d) < 1 / 2.75) {\n return $bm_sum($bm_mul(c, $bm_mul($bm_mul(7.5625, t), t)), b);\n } else if (t < 2 / 2.75) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul(7.5625, t -= 1.5 / 2.75), t), 0.75)), b);\n } else if (t < 2.5 / 2.75) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul(7.5625, t -= 2.25 / 2.75), t), 0.9375)), b);\n } else {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul(7.5625, t -= 2.625 / 2.75), t), 0.984375)), b);\n }\n}\nfunction bounceIn(t, b, c, d) {\n return $bm_sum($bm_sub(c, bounceOut($bm_sub(d, t), 0, c, d)), b);\n}\nfunction bounceInOut(t, b, c, d) {\n if (t < $bm_div(d, 2))\n return $bm_sum($bm_mul(bounceIn($bm_mul(t, 2), 0, c, d), 0.5), b);\n else\n return bounceOut(t * 2 - d, 0, c, d) * 0.5 + c * 0.5 + b;\n}\nfunction backIn(t, b, c, d) {\n return $bm_sum($bm_mul($bm_mul($bm_mul(c, t /= d), t), $bm_sub($bm_mul($bm_sum(s, 1), t), s)), b);\n}\nfunction backInOut(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_mul($bm_mul(t, t), $bm_sub($bm_mul($bm_sum(s *= 1.525, 1), t), s))), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul(t -= 2, t), $bm_sum($bm_mul($bm_sum(s *= 1.525, 1), t), s)), 2)), b);\n}\nfunction backOut(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul(t = t / d - 1, t), $bm_sum($bm_mul($bm_sum(s, 1), t), s)), 1)), b);\n}\nfunction circIn(t, b, c, d) {\n return $bm_sum($bm_mul($bm_neg(c), $bm_sub(Math.sqrt($bm_sub(1, $bm_mul(t /= d, t))), 1)), b);\n}\nfunction circInOut(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_div($bm_neg(c), 2), $bm_sub(Math.sqrt($bm_sub(1, $bm_mul(t, t))), 1)), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum(Math.sqrt($bm_sub(1, $bm_mul(t -= 2, t))), 1)), b);\n}\nfunction circOut(t, b, c, d) {\n return $bm_sum($bm_mul(c, Math.sqrt($bm_sub(1, $bm_mul(t = t / d - 1, t)))), b);\n}\nfunction elasticIn(t, b, c, d) {\n if (t == 0)\n return b;\n if ((t /= d) == 1)\n return $bm_sum(b, c);\n if (!p)\n p = $bm_mul(d, 0.3);\n if (!a || a < Math.abs(c)) {\n a = c;\n s = $bm_div(p, 4);\n } else\n s = $bm_mul($bm_div(p, $bm_mul(2, Math.PI)), Math.asin($bm_div(c, a)));\n return $bm_sum($bm_neg($bm_mul($bm_mul(a, Math.pow(2, $bm_mul(10, t -= 1))), Math.sin($bm_div($bm_mul($bm_sub($bm_mul(t, d), s), $bm_mul(2, Math.PI)), p)))), b);\n}\nfunction elasticInOut(t, b, c, d) {\n if (t == 0)\n return b;\n if ((t /= d / 2) == 2)\n return $bm_sum(b, c);\n if (!p)\n p = $bm_mul(d, 0.3 * 1.5);\n if (!a || a < Math.abs(c)) {\n a = c;\n s = $bm_div(p, 4);\n } else\n s = $bm_mul($bm_div(p, $bm_mul(2, Math.PI)), Math.asin($bm_div(c, a)));\n if (t < 1)\n return $bm_sum($bm_mul(-0.5, $bm_mul($bm_mul(a, Math.pow(2, $bm_mul(10, t -= 1))), Math.sin($bm_div($bm_mul($bm_sub($bm_mul(t, d), s), $bm_mul(2, Math.PI)), p)))), b);\n return $bm_sum($bm_sum($bm_mul($bm_mul($bm_mul(a, Math.pow(2, $bm_mul(-10, t -= 1))), Math.sin($bm_div($bm_mul($bm_sub($bm_mul(t, d), s), $bm_mul(2, Math.PI)), p))), 0.5), c), b);\n}\nfunction elasticOut(t, b, c, d) {\n if (t == 0)\n return b;\n if ((t /= d) == 1)\n return $bm_sum(b, c);\n if (!p)\n p = $bm_mul(d, 0.3);\n if (!a || a < Math.abs(c)) {\n a = c;\n s = $bm_div(p, 4);\n } else\n s = $bm_mul($bm_div(p, $bm_mul(2, Math.PI)), Math.asin($bm_div(c, a)));\n return $bm_sum($bm_sum($bm_mul($bm_mul(a, Math.pow(2, $bm_mul(-10, t))), Math.sin($bm_div($bm_mul($bm_sub($bm_mul(t, d), s), $bm_mul(2, Math.PI)), p))), c), b);\n}\nfunction expoIn(t, b, c, d) {\n return t == 0 ? b : c * (Math.pow(2, 10 * (t / d - 1)) - IN_EXPO_CORRECTION) + b;\n}\nfunction expoInOut(t, b, c, d) {\n var v;\n if ((t /= d / 2) < 1) {\n v = $bm_sub(Math.pow(2, $bm_mul(10, $bm_sub(t, 1))), IN_EXPO_CORRECTION);\n } else {\n v = $bm_sum($bm_sum($bm_neg(Math.pow(2, $bm_mul(-10, $bm_sub(t, 1)))), 2), IN_EXPO_CORRECTION);\n }\n return $bm_sum(b, $bm_mul($bm_div(v, 2), c));\n}\nfunction expoOut(t, b, c, d) {\n return t == d ? b + c : c * OUT_EXPO_CORRECTION * (-Math.pow(2, -10 * t / d) + 1) + b;\n}\nfunction quadIn(t, b, c, d) {\n return $bm_sum($bm_mul($bm_mul(c, t /= d), t), b);\n}\nfunction quadInOut(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_div(c, 2), t), t), b);\n return $bm_sum($bm_mul($bm_div($bm_neg(c), 2), $bm_sub($bm_mul(--t, $bm_sub(t, 2)), 1)), b);\n}\nfunction quadOut(t, b, c, d) {\n return $bm_sum($bm_mul($bm_mul($bm_neg(c), t /= d), $bm_sub(t, 2)), b);\n}\nfunction quartIn(t, b, c, d) {\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(c, t /= d), t), t), t), b);\n}\nfunction quartInOut(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div($bm_neg(c), 2), $bm_sub($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), 2)), b);\n}\nfunction quartOut(t, b, c, d) {\n return $bm_sum($bm_mul($bm_neg(c), $bm_sub($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), 1)), b);\n}\nfunction quintIn(t, b, c, d) {\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul(c, t /= d), t), t), t), t), b);\n}\nfunction quintInOut(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction quintOut(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction sineIn(t, b, c, d) {\n return $bm_sum($bm_sum($bm_mul($bm_neg(c), Math.cos($bm_mul($bm_div(t, d), $bm_div(Math.PI, 2)))), c), b);\n}\nfunction sineInOut(t, b, c, d) {\n return $bm_sum($bm_mul($bm_div($bm_neg(c), 2), $bm_sub(Math.cos($bm_div($bm_mul(Math.PI, t), d)), 1)), b);\n}\nfunction sineOut(t, b, c, d) {\n return $bm_sum($bm_mul(c, Math.sin($bm_mul($bm_div(t, d), $bm_div(Math.PI, 2)))), b);\n}\n$bm_rt = doIt() || value;"},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ty":"rc","d":1,"s":{"a":0,"k":[336,120],"ix":2},"p":{"a":0,"k":[0,0],"ix":3},"r":{"a":0,"k":39,"ix":4},"nm":"Rectangle Path 1","mn":"ADBE Vector Shape - Rect","hd":false},{"ty":"fl","c":{"a":0,"k":[0.909803921569,0.909803921569,0.909803921569,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[65.813,-744.164],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[94.346,94.346],"ix":3},"r":{"a":0,"k":18.5,"ix":6},"o":{"a":0,"k":39,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Rectangle 1","np":3,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":0,"op":141,"st":0,"cp":true,"bm":0},{"ddd":0,"ind":7,"ty":4,"nm":"Phone_Sticker_Splash Outlines","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[562.5,766,0],"ix":2},"a":{"a":0,"k":[552,763.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,0],[0,0],[-21.573,-7.428],[0,0],[-7.428,21.572],[0,0],[0,0],[13.107,-38.069],[0,0],[38.068,13.109],[0,0],[-13.107,38.067],[0,0],[-38.069,-13.108]],"o":[[0,0],[-7.427,21.572],[0,0],[21.573,7.428],[0,0],[0,0],[38.068,13.108],[0,0],[-13.107,38.068],[0,0],[-38.068,-13.108],[0,0],[13.108,-38.067],[0,0]],"v":[[55.495,-621.771],[54.689,-619.435],[80.301,-566.926],[287.357,-495.631],[339.865,-521.241],[340.671,-523.577],[393.06,-505.538],[438.254,-412.875],[91.156,595.167],[-1.505,640.36],[-393.059,505.539],[-438.254,412.876],[-91.156,-595.167],[1.505,-640.361]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[1,1,1,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[594.256,708.69],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":2,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[-0.042,-0.014],[0,0],[19.61,-57.065],[0,0],[57.115,19.627],[0.042,0.015],[0,0],[-19.61,57.065],[0,0],[-57.114,-19.627]],"o":[[0,0],[57.041,19.68],[0,0],[-19.628,57.115],[-0.041,-0.014],[0,0],[-57.042,-19.68],[0,0],[19.628,-57.114],[0.041,0.014]],"v":[[19.383,-662.057],[391.776,-533.578],[459.527,-394.669],[119.694,594.224],[-19.26,662.099],[-19.385,662.056],[-391.777,533.578],[-459.528,394.669],[-119.695,-594.224],[19.258,-662.099]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.948999980852,0.948999980852,0.948999980852,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[592.765,710.293],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 2","np":2,"cix":2,"bm":0,"ix":2,"mn":"ADBE Vector Group","hd":false}],"ip":0,"op":141,"st":0,"cp":true,"bm":0},{"ddd":0,"ind":8,"ty":4,"nm":"Blob Vector/Phone_Sticker_Splash Outlines","sr":1,"ks":{"o":{"a":0,"k":15,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[562.5,750,0],"ix":2},"a":{"a":0,"k":[552,763.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[-173.74,117.189],[178.007,263.906],[173.74,-117.189],[-178.007,-263.906]],"o":[[173.74,-117.188],[-178.007,-263.906],[-173.741,117.19],[178.007,263.906]],"v":[[425.636,548.82],[331.461,-298.379],[-391.053,-527.262],[-383.328,162.773]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.125,0.564999988032,0.917999985639,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[558.341,717.826],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":4,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":0,"op":141,"st":0,"cp":true,"bm":0}],"markers":[]}