cc65/libsrc/c64/emd/dtv-himem.s
Oliver Schmidt d6c3bd29ac Renamed JUMPTABLE and cleaned up module.cfg.
This change was suppsed to fix the issue that the former JUMPTABLE is merked as 'ro' while it is actually written to in several scenarios. When drivers are converted using co65 and then compiled into ROMs the JUMPTABLE isn't copied to RAM and therefore the write operations in question fail.

However unfortunately I didn't succeed in changing that :-( Just setting the former JUMPTABLE to 'rw' broke the drivers. So I placed the DATA segment directly after the former JUMPTABLE segment. This made the drivers converted with co65 work again - obviously after changing libsrc/Makefile:235 from '--code-label' to '--data-label'. But the actual dynamic drivers still didn't work as the former JUMPTABLE wasn't placed as the beginning of the loaded file anymore. That effect could be changed by exchanging src/ld65/o65.c:1391 with src/ld65/o65.c:1394 but doing so broke the drivers again :-((
2014-05-01 21:44:39 +02:00

249 lines
6.7 KiB
ArmAsm

;
; Extended memory driver for the C64 D2TV (the second or PAL version).
; Driver works without problems when statically linked.
;
; Ullrich von Bassewitz, 2005-11-27
;
.include "zeropage.inc"
.include "em-kernel.inc"
.include "em-error.inc"
.import _get_ostype
.macpack generic
; ------------------------------------------------------------------------
; Header. Includes jump table
.segment "HEADER"
; Driver signature
.byte $65, $6d, $64 ; "emd"
.byte EMD_API_VERSION ; EM API version number
; Library reference
.addr $0000
; Jump table
.addr INSTALL
.addr UNINSTALL
.addr PAGECOUNT
.addr MAP
.addr USE
.addr COMMIT
.addr COPYFROM
.addr COPYTO
; ------------------------------------------------------------------------
; Constants
OP_COPYFROM = %00001101
OP_COPYTO = %00001111
START_BANK = 2 ; Start at $20000
PAGES = (2048 - 128) * 4
; ------------------------------------------------------------------------
; Data.
.bss
window: .res 256 ; Memory "window"
.data
; The MAP and COMMIT entries will actually call COPYFROM/COPYTO with
; a pointer to the following data structure:
dma_params: .word window ; Host address
.byte 0 ; Offset in page
curpage: .word $0000 ; Page
.word .sizeof (window); # bytes to move, lo, hi
.code
; ------------------------------------------------------------------------
; INSTALL routine. Is called after the driver is loaded into memory. If
; possible, check if the hardware is present and determine the amount of
; memory available.
; Must return an EM_ERR_xx code in a/x.
;
INSTALL:
; Check for a DTV
ldx #1
stx $d03f
ldx $d040
cpx $d000
bne @present
inc $d000
cpx $d040
beq @present
dec $d000
; DTV not found
lda #<EM_ERR_NO_DEVICE
ldx #>EM_ERR_NO_DEVICE
rts
@present:
ldx #$FF
stx curpage+1 ; Invalidate curpage
inx ; X = 0
txa ; A/X = EM_ERR_OK
; rts ; Run into UNINSTALL instead
; ------------------------------------------------------------------------
; UNINSTALL routine. Is called before the driver is removed from memory.
; Can do cleanup or whatever. Must not return anything.
;
UNINSTALL:
rts
; ------------------------------------------------------------------------
; PAGECOUNT: Return the total number of available pages in a/x.
;
PAGECOUNT:
lda #<PAGES
ldx #>PAGES
rts
; ------------------------------------------------------------------------
; MAP: Map the page in a/x into memory and return a pointer to the page in
; a/x. The contents of the currently mapped page (if any) may be discarded
; by the driver.
;
MAP: sta curpage
stx curpage+1 ; Remember the new page
lda #<dma_params
ldx #>dma_params
jsr COPYFROM ; Copy data into the window
lda #<window
ldx #>window ; Return the window address
done: rts
; ------------------------------------------------------------------------
; USE: Tell the driver that the window is now associated with a given page.
USE: sta curpage
stx curpage+1 ; Remember the page
lda #<window
ldx #>window ; Return the window
rts
; ------------------------------------------------------------------------
; COMMIT: Commit changes in the memory window to extended storage.
COMMIT: lda curpage+1 ; Do we have a page mapped?
bmi done ; Jump if no page mapped
lda #<dma_params
ldx #>dma_params
; Run into COPYTO
; ------------------------------------------------------------------------
; COPYTO: Copy from linear into extended memory. A pointer to a structure
; describing the request is passed in a/x.
; The function must not return anything.
;
COPYTO: sta ptr1
stx ptr1+1 ; Save the pointer
ldx #OP_COPYTO ; Load the command
bne transfer
; ------------------------------------------------------------------------
; COPYFROM: Copy from extended into linear memory. A pointer to a structure
; describing the request is passed in a/x.
; The function must not return anything.
;
COPYFROM:
sta ptr1
stx ptr1+1 ; Save the pointer
ldx #OP_COPYFROM
; DTV DMA transfer routine. Expects the command in X.
; NOTE: We're using knowledge about field order in the EM_COPY struct here!
transfer:
jsr WAIT ; Wait until DMA is finished
; Modulo disable
ldy #$00
sty $d31e
; Setup the target address and the source and target steps. Y contains zero,
; which is EM_COPY::BUF.
sty $d307 ; Source step high = 0
sty $d309 ; Dest step high = 0
lda (ptr1),y
sta $d303 ; Dest address low
iny ; Y = 1
sty $d306 ; Source step low = 1
sty $d308 ; Dest step low = 1
lda (ptr1),y
sta $d304
lda #$40 ; Dest is always RAM, start at $00000
sta $d305
; Setup the source address. Incrementing Y will make it point to EM_COPY::OFFS.
; We will allow page numbers higher than PAGES and map them to ROM. This will
; allow reading the ROM by specifying a page starting with PAGES.
iny ; EM_COPY::OFFS
lda (ptr1),y
sta $d300
iny ; EM_COPY::PAGE
lda (ptr1),y
sta $d301
iny
lda (ptr1),y
adc #START_BANK ; Carry clear here from WAIT
and #$3f
cmp #>PAGES+START_BANK ; Valid range?
bcs @L1 ; Jump if no
ora #$40 ; Address RAM
@L1: sta $d302
; Length
iny ; EM_COPY::COUNT
lda (ptr1),y
sta $d30a
iny
lda (ptr1),y
sta $d30b
; Start DMA
stx $d31f
; Wait until DMA is done
WAIT: lda $d31f
lsr a
bcs WAIT
rts