lsnes/src/core/render.cpp

603 lines
15 KiB
C++
Raw Normal View History

#include "lsnes.hpp"
#include <snes/snes.hpp>
2011-11-06 17:37:53 +02:00
#include "core/misc.hpp"
2011-11-06 14:41:41 +02:00
#include "core/png.hpp"
#include "core/render.hpp"
#include <sstream>
#include <list>
#include <iomanip>
#include <cstdint>
#include <string>
2011-11-06 17:37:53 +02:00
#include <map>
#include <vector>
2011-11-06 17:37:53 +02:00
#define TAG_ZEROWIDTH 0
#define TAG_NARROW 1
#define TAG_WIDE 2
#define TAG_TABULATION 3
#define TAG_WIDTH_MASK 3
#define TAG_LINECHANGE 4
extern const char* font_hex_data;
namespace
{
2011-11-06 17:37:53 +02:00
std::vector<uint32_t> font_glyph_data;
std::map<uint32_t, uint32_t> font_glyph_offsets;
uint32_t parse_word(const char* x)
{
char buf[9] = {0};
char* end;
memcpy(buf, x, 8);
unsigned long v = strtoul(buf, &end, 16);
if(end != buf + 8)
v = 0xFFFFFFFFUL;
//std::cerr << "Parse word " << buf << std::endl;
return v;
}
void init_font()
{
static bool iflag = false;
if(iflag)
return;
//Special glyph data.
font_glyph_data.resize(7);
//Space & Unknown.
font_glyph_data[0] = TAG_NARROW;
font_glyph_data[1] = 0;
font_glyph_data[2] = 0;
font_glyph_data[3] = 0;
font_glyph_data[4] = 0;
//Tabulation.
font_glyph_data[5] = TAG_TABULATION;
//Linefeed.
font_glyph_data[6] = TAG_ZEROWIDTH | TAG_LINECHANGE;
size_t lsptr = 0;
uint32_t lc = 1;
for(size_t i = 0;; i++) {
//Skip spaces.
switch(font_hex_data[i]) {
case ' ':
case '\t':
//Skip spaces at start of line.
if(lsptr == i)
lsptr++;
case '\r':
case '\n':
case '\0': {
char* end;
uint32_t cp;
size_t fdatastart;
//Is this a comment?
if(lsptr == i || font_hex_data[lsptr] == '#')
goto skip_line;
cp = strtoul(font_hex_data + lsptr, &end, 16);
if(*end != ':') {
messages << "Malformed line " << lc << " in font data" << std::endl;
goto skip_line;
}
fdatastart = end - font_hex_data + 1;
if(i - fdatastart == 32) {
//Narrow glyph.
font_glyph_offsets[cp] = font_glyph_data.size();
font_glyph_data.push_back(TAG_NARROW);
for(uint32_t k = 0; k < 4; k++)
font_glyph_data.push_back(parse_word(end + 1 + 8 * k));
} else if(i - fdatastart == 64) {
//Wide glyph.
font_glyph_offsets[cp] = font_glyph_data.size();
font_glyph_data.push_back(TAG_WIDE);
for(uint32_t k = 0; k < 8; k++)
font_glyph_data.push_back(parse_word(end + 1 + 8 * k));
} else {
messages << "Malformed line " << lc << " in font data" << std::endl;
goto skip_line;
}
skip_line:
if(font_hex_data[i] != '\r' || font_hex_data[i + 1] != '\n')
lc++;
lsptr = i + 1;
}
};
if(!font_hex_data[i])
break;
}
//Special characters.
font_glyph_offsets[9] = 5;
font_glyph_offsets[10] = 6;
font_glyph_offsets[32] = 0;
uint32_t glyphs = 0;
uint32_t glyphs_narrow = 0;
uint32_t glyphs_wide = 0;
uint32_t glyphs_special = 0;
for(auto i : font_glyph_offsets) {
if(font_glyph_data[i.second] == TAG_NARROW)
glyphs_narrow++;
else if(font_glyph_data[i.second] == TAG_WIDE)
glyphs_wide++;
else
glyphs_special++;
glyphs++;
}
messages << "Loaded font data: " << glyphs << " glyphs (" << glyphs_narrow << " narrow, " <<
glyphs_wide << " wide, " << glyphs_special << " special)." << std::endl;
iflag = true;
}
inline uint32_t find_font_glyph_offset(uint32_t cp)
{
return font_glyph_offsets.count(cp) ? font_glyph_offsets[cp] : 0;
}
inline uint32_t process_tag(uint32_t tag, int32_t& x, int32_t& y, int32_t orig_x)
{
uint32_t dwidth;
switch(tag & TAG_WIDTH_MASK) {
case TAG_ZEROWIDTH:
dwidth = 0;
break;
case TAG_NARROW:
dwidth = 8;
break;
case TAG_WIDE:
dwidth = 16;
break;
case TAG_TABULATION:
dwidth = 0x40 - (x & 0x3F);
break;
}
x += dwidth;
if(tag & TAG_LINECHANGE) {
y += 16;
x = orig_x;
}
return dwidth;
}
inline bool is_visible(uint32_t tag)
{
2011-11-06 17:37:53 +02:00
return ((tag & TAG_WIDTH_MASK) == TAG_NARROW || (tag & TAG_WIDTH_MASK) == TAG_WIDE);
}
}
2011-11-06 17:37:53 +02:00
void do_init_font()
{
init_font();
}
std::pair<uint32_t, const uint32_t*> find_glyph(uint32_t codepoint, int32_t x, int32_t y, int32_t orig_x,
int32_t& next_x, int32_t& next_y) throw()
{
2011-11-06 17:37:53 +02:00
init_font();
next_x = x;
next_y = y;
uint32_t offset = find_font_glyph_offset(codepoint);
uint32_t tag = font_glyph_data[offset];
uint32_t dwidth = process_tag(tag, next_x, next_y, orig_x);
bool visible = is_visible(tag);
return std::pair<uint32_t, const uint32_t*>(dwidth, visible ? &font_glyph_data[offset + 1] : NULL);
}
render_object::~render_object() throw()
{
}
void render_text(struct screen& scr, int32_t x, int32_t y, const std::string& text, premultiplied_color fg,
premultiplied_color bg) throw(std::bad_alloc)
{
int32_t orig_x = x;
uint32_t unicode_code = 0;
uint8_t unicode_left = 0;
for(size_t i = 0; i < text.length(); i++) {
uint8_t ch = text[i];
if(ch < 128)
unicode_code = text[i];
else if(ch < 192) {
if(!unicode_left)
continue;
unicode_code = 64 * unicode_code + ch - 128;
if(--unicode_left)
continue;
} else if(ch < 224) {
unicode_code = ch - 192;
unicode_left = 1;
continue;
} else if(ch < 240) {
unicode_code = ch - 224;
unicode_left = 2;
continue;
} else if(ch < 248) {
unicode_code = ch - 240;
unicode_left = 3;
continue;
} else
continue;
int32_t next_x, next_y;
auto p = find_glyph(unicode_code, x, y, orig_x, next_x, next_y);
uint32_t dx = 0;
uint32_t dw = p.first;
uint32_t dy = 0;
uint32_t dh = 16;
uint32_t cx = static_cast<uint32_t>(static_cast<int32_t>(scr.originx) + x);
uint32_t cy = static_cast<uint32_t>(static_cast<int32_t>(scr.originy) + y);
while(cx > scr.width && dw > 0) {
dx++;
dw--;
cx++;
}
while(cy > scr.height && dh > 0) {
dy++;
dh--;
cy++;
}
while(cx + dw > scr.width && dw > 0)
dw--;
while(cy + dh > scr.height && dh > 0)
dh--;
if(!dw || !dh)
continue; //Outside screen.
if(p.second == NULL) {
//Blank glyph.
for(uint32_t j = 0; j < dh; j++) {
uint32_t* base = scr.rowptr(cy + j) + cx;
for(uint32_t i = 0; i < dw; i++)
bg.apply(base[i]);
}
} else if(p.first == 16) {
//Wide glyph.
for(uint32_t j = 0; j < dh; j++) {
uint32_t dataword = p.second[(dy + j) >> 1];
uint32_t* base = scr.rowptr(cy + j) + cx;
uint32_t rbit = (~((dy + j) << 4) & 0x1F) - dx;
for(uint32_t i = 0; i < dw; i++)
if((dataword >> (rbit - i)) & 1)
fg.apply(base[i]);
else
bg.apply(base[i]);
}
} else {
//narrow glyph.
for(uint32_t j = 0; j < dh; j++) {
uint32_t dataword = p.second[(dy + j) >> 2];
uint32_t* base = scr.rowptr(cy + j) + cx;
uint32_t rbit = (~((dy + j) << 3) & 0x1F) - dx;
for(uint32_t i = 0; i < dw; i++)
if((dataword >> (rbit - i)) & 1)
fg.apply(base[i]);
else
bg.apply(base[i]);
}
}
x = next_x;
y = next_y;
}
}
void render_queue::add(struct render_object& obj) throw(std::bad_alloc)
{
q.push_back(&obj);
}
void render_queue::run(struct screen& scr) throw()
{
2011-10-19 19:25:31 +03:00
for(auto i : q) {
try {
2011-10-19 19:25:31 +03:00
(*i)(scr);
} catch(...) {
}
2011-10-19 19:25:31 +03:00
delete i;
}
q.clear();
}
void render_queue::clear() throw()
{
2011-10-19 19:25:31 +03:00
for(auto i : q)
delete i;
q.clear();
}
render_queue::~render_queue() throw()
{
clear();
}
uint32_t screen::make_color(uint8_t r, uint8_t g, uint8_t b) throw()
{
uint32_t _r = r;
uint32_t _g = g;
uint32_t _b = b;
return (_r << 16) + (_g << 8) + _b;
}
lcscreen::lcscreen(const uint32_t* mem, bool hires, bool interlace, bool overscan, bool region) throw()
{
uint32_t dataoffset = 0;
width = hires ? 512 : 256;
height = 0;
if(region) {
//PAL.
height = 239;
dataoffset = overscan ? 9 : 1;
} else {
//presumably NTSC.
height = 224;
dataoffset = overscan ? 16 : 9;
}
if(interlace)
height <<= 1;
memory = mem + dataoffset * 1024;
pitch = interlace ? 512 : 1024;
user_memory = false;
}
lcscreen::lcscreen(const uint32_t* mem, uint32_t _width, uint32_t _height) throw()
{
width = _width;
height = _height;
memory = mem;
pitch = width;
user_memory = false;
}
lcscreen::lcscreen() throw()
{
width = 0;
height = 0;
memory = NULL;
user_memory = true;
pitch = 0;
allocated = 0;
}
lcscreen::lcscreen(const lcscreen& ls) throw(std::bad_alloc)
{
width = ls.width;
height = ls.height;
pitch = width;
user_memory = true;
allocated = static_cast<size_t>(width) * height;
memory = new uint32_t[allocated];
for(size_t l = 0; l < height; l++)
memcpy(const_cast<uint32_t*>(memory + l * width), ls.memory + l * ls.pitch, 4 * width);
}
lcscreen& lcscreen::operator=(const lcscreen& ls) throw(std::bad_alloc, std::runtime_error)
{
if(!user_memory)
throw std::runtime_error("Can't copy to non-user memory");
if(this == &ls)
return *this;
if(allocated < static_cast<size_t>(ls.width) * ls.height) {
size_t p_allocated = static_cast<size_t>(ls.width) * ls.height;
memory = new uint32_t[p_allocated];
allocated = p_allocated;
}
width = ls.width;
height = ls.height;
pitch = width;
for(size_t l = 0; l < height; l++)
memcpy(const_cast<uint32_t*>(memory + l * width), ls.memory + l * ls.pitch, 4 * width);
return *this;
}
lcscreen::~lcscreen()
{
if(user_memory)
delete[] const_cast<uint32_t*>(memory);
}
void lcscreen::load(const std::vector<char>& data) throw(std::bad_alloc, std::runtime_error)
{
if(!user_memory)
throw std::runtime_error("Can't load to non-user memory");
const uint8_t* data2 = reinterpret_cast<const uint8_t*>(&data[0]);
2011-09-15 22:56:33 +03:00
if(data.size() < 2)
throw std::runtime_error("Corrupt saved screenshot data");
uint32_t _width = static_cast<uint32_t>(data2[0]) * 256 + static_cast<uint32_t>(data2[1]);
if(_width > 1 && data.size() % (3 * _width) != 2)
throw std::runtime_error("Corrupt saved screenshot data");
uint32_t _height = (data.size() - 2) / (3 * _width);
if(allocated < static_cast<size_t>(_width) * _height) {
size_t p_allocated = static_cast<size_t>(_width) * _height;
memory = new uint32_t[p_allocated];
allocated = p_allocated;
}
uint32_t* mem = const_cast<uint32_t*>(memory);
width = _width;
height = _height;
pitch = width;
for(size_t i = 0; i < (data.size() - 2) / 2; i++)
mem[i] = static_cast<uint32_t>(data2[2 + 3 * i]) * 65536 +
static_cast<uint32_t>(data2[2 + 3 * i + 1]) * 256 +
static_cast<uint32_t>(data2[2 + 3 * i + 2]);
}
void lcscreen::save(std::vector<char>& data) throw(std::bad_alloc)
{
data.resize(2 + 3 * static_cast<size_t>(width) * height);
uint8_t* data2 = reinterpret_cast<uint8_t*>(&data[0]);
data2[0] = (width >> 8);
data2[1] = width;
for(size_t i = 0; i < (data.size() - 2) / 3; i++) {
data[2 + 3 * i] = memory[(i / width) * pitch + (i % width)] >> 16;
data[2 + 3 * i + 1] = memory[(i / width) * pitch + (i % width)] >> 8;
data[2 + 3 * i + 2] = memory[(i / width) * pitch + (i % width)];
}
}
void lcscreen::save_png(const std::string& file) throw(std::bad_alloc, std::runtime_error)
{
uint8_t* buffer = new uint8_t[3 * static_cast<size_t>(width) * height];
for(uint32_t j = 0; j < height; j++)
for(uint32_t i = 0; i < width; i++) {
uint32_t word = memory[pitch * j + i];
uint32_t l = (word >> 15) & 0xF;
uint32_t r = l * ((word >> 0) & 0x1F);
uint32_t g = l * ((word >> 5) & 0x1F);
uint32_t b = l * ((word >> 10) & 0x1F);
buffer[3 * static_cast<size_t>(width) * j + 3 * i + 0] = r * 255 / 465;
buffer[3 * static_cast<size_t>(width) * j + 3 * i + 1] = g * 255 / 465;
buffer[3 * static_cast<size_t>(width) * j + 3 * i + 2] = b * 255 / 465;
}
try {
save_png_data(file, buffer, width, height);
delete[] buffer;
} catch(...) {
delete[] buffer;
throw;
}
}
void screen::copy_from(lcscreen& scr, uint32_t hscale, uint32_t vscale) throw()
{
uint32_t copyable_width = (width - originx) / hscale;
uint32_t copyable_height = (height - originy) / vscale;
copyable_width = (copyable_width > scr.width) ? scr.width : copyable_width;
copyable_height = (copyable_height > scr.height) ? scr.height : copyable_height;
for(uint32_t y = 0; y < height; y++) {
memset(rowptr(y), 0, 4 * width);
}
for(uint32_t y = 0; y < copyable_height; y++) {
uint32_t line = y * vscale + originy;
uint32_t* ptr = rowptr(line) + originx;
const uint32_t* sbase = scr.memory + y * scr.pitch;
for(uint32_t x = 0; x < copyable_width; x++) {
uint32_t c = palette[sbase[x] & 0x7FFFF];
for(uint32_t i = 0; i < hscale; i++)
*(ptr++) = c;
}
for(uint32_t j = 1; j < vscale; j++)
memcpy(rowptr(line + j) + originx, rowptr(line) + originx, 4 * hscale * copyable_width);
}
}
void screen::reallocate(uint32_t _width, uint32_t _height, uint32_t _originx, uint32_t _originy, bool upside_down)
throw(std::bad_alloc)
{
if(_width == width && _height == height) {
originx = _originx;
originy = _originy;
return;
}
if(!_width || !_height) {
width = height = originx = originy = pitch = 0;
if(memory && !user_memory)
delete[] memory;
memory = NULL;
user_memory = false;
flipped = upside_down;
return;
}
uint32_t* newmem = new uint32_t[_width * _height];
width = _width;
height = _height;
originx = _originx;
originy = _originy;
pitch = 4 * _width;
if(memory && !user_memory)
delete[] memory;
memory = newmem;
user_memory = false;
flipped = upside_down;
}
void screen::set(uint32_t* _memory, uint32_t _width, uint32_t _height, uint32_t _originx, uint32_t _originy,
uint32_t _pitch) throw()
{
if(memory && !user_memory)
delete[] memory;
width = _width;
height = _height;
originx = _originx;
originy = _originy;
pitch = _pitch;
user_memory = true;
memory = _memory;
flipped = false;
}
uint32_t* screen::rowptr(uint32_t row) throw()
{
if(flipped)
row = height - row - 1;
return reinterpret_cast<uint32_t*>(reinterpret_cast<uint8_t*>(memory) + row * pitch);
}
screen::screen() throw()
{
memory = NULL;
width = height = originx = originy = pitch = 0;
user_memory = false;
flipped = false;
palette = NULL;
set_palette(16, 8, 0);
}
screen::~screen() throw()
{
if(memory && !user_memory)
delete[] memory;
}
void clip_range(uint32_t origin, uint32_t size, int32_t base, int32_t& minc, int32_t& maxc) throw()
{
int64_t _origin = origin;
int64_t _size = size;
int64_t _base = base;
int64_t _minc = minc;
int64_t _maxc = maxc;
int64_t mincoordinate = _base + _origin + _minc;
int64_t maxcoordinate = _base + _origin + _maxc;
if(mincoordinate < 0)
_minc = _minc - mincoordinate;
if(maxcoordinate > _size)
_maxc = _maxc - (maxcoordinate - _size);
if(_minc >= maxc) {
minc = 0;
maxc = 0;
} else {
minc = _minc;
maxc = _maxc;
}
}
void screen::set_palette(uint32_t r, uint32_t g, uint32_t b)
{
if(!palette)
palette = new uint32_t[0x80000];
else if(r == palette_r && g == palette_g && b == palette_b)
return;
for(size_t i = 0; i < static_cast<size_t>(width) * height; i++) {
uint32_t word = memory[i];
uint32_t R = (word >> palette_r) & 0xFF;
uint32_t G = (word >> palette_g) & 0xFF;
uint32_t B = (word >> palette_b) & 0xFF;
memory[i] = (R << r) | (G << g) | (B << b);
}
for(unsigned i = 0; i < 0x80000; i++) {
unsigned l = (i >> 15) & 0xF;
unsigned R = (i >> 0) & 0x1F;
unsigned G = (i >> 5) & 0x1F;
unsigned B = (i >> 10) & 0x1F;
double _l = static_cast<double>(l);
double m = 17.0 / 31.0;
R = floor(m * R * _l + 0.5);
G = floor(m * G * _l + 0.5);
B = floor(m * B * _l + 0.5);
palette[i] = (R << r) | (G << g) | (B << b);
}
palette_r = r;
palette_g = g;
palette_b = b;
}