lsnes/include/library/portctrl-data.hpp
Ilari Liusvaara 436b1d183d Remove partial exception specifiers
These are deprecated in newer C++ versions.
2019-01-30 19:26:21 +02:00

1445 lines
34 KiB
C++

#ifndef _library__portctrl_data__hpp__included__
#define _library__portctrl_data__hpp__included__
#include <cstring>
#include <climits>
#include <cstdio>
#include <cstdlib>
#include <cstdio>
#include <cstdint>
#include <sstream>
#include <iomanip>
#include <iostream>
#include <stdexcept>
#include <string>
#include <vector>
#include <map>
#include <list>
#include <set>
#include "json.hpp"
#include "threads.hpp"
#include "memtracker.hpp"
namespace binarystream
{
class input;
class output;
}
/**
* Memory to allocate for controller frame.
*/
#define MAXIMUM_CONTROLLER_FRAME_SIZE 128
/**
* Maximum amount of data frame::display() can write.
*/
#define MAX_DISPLAY_LENGTH 128
/**
* Maximum amount of data frame::serialize() can write.
*/
#define MAX_SERIALIZED_SIZE 256
/**
* Size of controller page.
*/
#define CONTROLLER_PAGE_SIZE 65500
/**
* Special return value for deserialize() indicating no input was taken.
*/
#define DESERIALIZE_SPECIAL_BLANK 0xFFFFFFFFUL
namespace portctrl
{
extern const char* movie_page_id;
/**
* Is not field terminator.
*
* Parameter ch: The character.
* Returns: True if character is not terminator, false if character is terminator.
*/
inline bool is_nonterminator(char ch) throw()
{
return (ch != '|' && ch != '\r' && ch != '\n' && ch != '\0');
}
/**
* Read button value.
*
* Parameter buf: Buffer to read from.
* Parameter idx: Index to buffer. Updated.
* Returns: The read value.
*/
inline bool read_button_value(const char* buf, size_t& idx) throw()
{
char ch = buf[idx];
if(is_nonterminator(ch))
idx++;
return (ch != '|' && ch != '\r' && ch != '\n' && ch != '\0' && ch != '.' && ch != ' ' && ch != '\t');
}
/**
* Read axis value.
*
* Parameter buf: Buffer to read from.
* Parameter idx: Index to buffer. Updated.
* Returns: The read value.
*/
short read_axis_value(const char* buf, size_t& idx) throw();
/**
* Write axis value.
*
* Parameter buf: The buffer to write to.
* Parameter _v: The axis value.
* Returns: Number of bytes written.
*/
size_t write_axis_value(char* buf, short _v);
/**
* Skip whitespace.
*
* Parameter buf: Buffer to read from.
* Parameter idx: Index to buffer. Updated.
*/
inline void skip_field_whitespace(const char* buf, size_t& idx) throw()
{
while(buf[idx] == ' ' || buf[idx] == '\t')
idx++;
}
/**
* Skip rest of the field.
*
* Parameter buf: Buffer to read from.
* Parameter idx: Index to buffer. Updated.
* Parameter include_pipe: If true, also skip the '|'.
*/
inline void skip_rest_of_field(const char* buf, size_t& idx, bool include_pipe) throw()
{
while(is_nonterminator(buf[idx]))
idx++;
if(include_pipe && buf[idx] == '|')
idx++;
}
/**
* Serialize short.
*/
inline void serialize_short(unsigned char* buf, short val)
{
buf[0] = static_cast<unsigned short>(val) >> 8;
buf[1] = static_cast<unsigned short>(val);
}
/**
* Serialize short.
*/
inline short unserialize_short(const unsigned char* buf)
{
return static_cast<short>((static_cast<unsigned short>(buf[0]) << 8) | static_cast<unsigned short>(buf[1]));
}
class type;
/**
* Index triple.
*
* Note: The index 0 has to be mapped to triple (0, 0, 0).
*/
struct index_triple
{
/**
* If true, the other parameters are valid. Otherwise this index doesn't correspond to anything valid, but still
* exists. The reason for having invalid entries is to be backward-compatible.
*/
bool valid;
/**
* The port number.
*/
unsigned port;
/**
* The controller number.
*/
unsigned controller;
/**
* The control number.
*/
unsigned control;
};
/**
* Controller index mappings
*/
struct index_map
{
/**
* The poll indices.
*/
std::vector<index_triple> indices;
/**
* The logical controller mappings.
*/
std::vector<std::pair<unsigned, unsigned>> logical_map;
/**
* Legacy PCID mappings.
*/
std::vector<std::pair<unsigned, unsigned>> pcid_map;
};
class type_set;
/**
* A button or axis on controller
*/
struct button
{
/**
* Type of button
*/
enum _type
{
TYPE_NULL, //Nothing (except takes the slot).
TYPE_BUTTON, //Button.
TYPE_AXIS, //Axis.
TYPE_RAXIS, //Relative Axis (mouse).
TYPE_TAXIS, //Throttle Axis (does not pair).
TYPE_LIGHTGUN, //Lightgun axis.
};
enum _type type;
char32_t symbol;
std::string name;
bool shadow;
int16_t rmin; //Range min.
int16_t rmax; //Range max.
bool centers;
std::string macro; //Name in macro (must be prefix-free).
char msymbol; //Symbol in movie.
/**
* Is analog?
*/
bool is_analog() const throw() { return type == (TYPE_AXIS) || (type == TYPE_RAXIS) || (type == TYPE_TAXIS)
|| (type == TYPE_LIGHTGUN); }
};
/**
* A controller.
*/
struct controller
{
std::string cclass; //Controller class.
std::string type; //Controller type.
std::vector<button> buttons; //Buttons.
/**
* Count number of analog actions on this controller.
*/
unsigned analog_actions() const;
/**
* Get the axis numbers of specified analog action. If no valid axis exists, returns UINT_MAX.
*/
std::pair<unsigned, unsigned> analog_action(unsigned i) const;
/**
* Get specified button, or NULL if it doesn't exist.
*/
struct button* get(unsigned i)
{
if(i >= buttons.size())
return NULL;
return &buttons[i];
}
};
/**
* A port controller set
*/
struct controller_set
{
std::string iname;
std::string hname;
std::string symbol;
std::vector<controller> controllers; //Controllers.
std::set<unsigned> legal_for; //Ports this is legal for
/**
* Get specified controller, or NULL if it doesn't exist.
*/
struct controller* get(unsigned c) throw()
{
if(c >= controllers.size())
return NULL;
return &controllers[c];
}
/**
* Get specified button, or NULL if it doesn't exist.
*/
struct button* get(unsigned c, unsigned i) throw();
};
/**
* Type of controller.
*/
class type
{
public:
/**
* Create a new port type.
*
* Parameter iname: Internal name of the port type.
* Parameter hname: Human-readable name of the port type.
* Parameter ssize: The storage size in bytes.
* Throws std::bad_alloc: Not enough memory.
*/
type(const std::string& iname, const std::string& hname, size_t ssize);
/**
* Unregister a port type.
*/
virtual ~type() throw();
/**
* Writes controller data into compressed representation.
*
* Parameter buffer: The buffer storing compressed representation of controller state.
* Parameter idx: Index of controller.
* Parameter ctrl: The control to manipulate.
* Parameter x: New value for control. Only zero/nonzero matters for buttons.
*/
void (*write)(const type* _this, unsigned char* buffer, unsigned idx, unsigned ctrl, short x);
/**
* Read controller data from compressed representation.
*
* Parameter buffer: The buffer storing compressed representation of controller state.
* Parameter idx: Index of controller.
* Parameter ctrl: The control to query.
* Returns: The value of control. Buttons return 0 or 1.
*/
short (*read)(const type* _this, const unsigned char* buffer, unsigned idx, unsigned ctrl);
/**
* Take compressed controller data and serialize it into textual representation.
*
* - The initial '|' is also written.
*
* Parameter buffer: The buffer storing compressed representation of controller state.
* Parameter textbuf: The text buffer to write to.
* Returns: Number of bytes written.
*/
size_t (*serialize)(const type* _this, const unsigned char* buffer, char* textbuf);
/**
* Unserialize textual representation into compressed controller state.
*
* - Only stops reading on '|', NUL, CR or LF in the final read field. That byte is not read.
*
* Parameter buffer: The buffer storing compressed representation of controller state.
* Parameter textbuf: The text buffer to read.
* Returns: Number of bytes read.
* Throws std::runtime_error: Bad serialization.
*/
size_t (*deserialize)(const type* _this, unsigned char* buffer, const char* textbuf);
/**
* Is the device legal for port?
*
* Parameter port: Port to query.
* Returns: Nonzero if legal, zero if illegal.
*/
int legal(unsigned port)
{
return controller_info->legal_for.count(port) ? 1 : 0;
}
/**
* Controller info.
*/
controller_set* controller_info;
/**
* Get number of used control indices on controller.
*
* Parameter controller: Number of controller.
* Returns: Number of used control indices.
*/
unsigned used_indices(unsigned controller)
{
auto c = controller_info->get(controller);
return c ? c->buttons.size() : 0;
}
/**
* Human-readable name.
*/
std::string hname;
/**
* Number of bytes it takes to store this.
*/
size_t storage_size;
/**
* Name of port type.
*/
std::string name;
/**
* Is given controller present?
*/
bool is_present(unsigned controller) const throw();
private:
type(const type&);
type& operator=(const type&);
};
/**
* A set of port types.
*/
class type_set
{
public:
/**
* Create empty port type set.
*/
type_set() throw();
/**
* Make a port type set with specified types. If called again with the same parameters, returns the same object.
*
* Parameter types: The types.
* Parameter control_map: The control map
* Throws std::bad_alloc: Not enough memory.
* Throws std::runtime_error: Illegal port types.
*/
static type_set& make(std::vector<type*> types, struct index_map control_map);
/**
* Compare sets for equality.
*/
bool operator==(const type_set& s) const throw() { return this == &s; }
/**
* Compare sets for non-equality.
*/
bool operator!=(const type_set& s) const throw() { return this != &s; }
/**
* Get offset of specified port.
*
* Parameter port: The number of port.
* Returns: The offset of port.
* Throws std::runtime_error: Bad port number.
*/
size_t port_offset(unsigned port) const
{
if(port >= port_count)
throw std::runtime_error("Invalid port index");
return port_offsets[port];
}
/**
* Get type of specified port.
*
* Parameter port: The number of port.
* Returns: The port type.
* Throws std::runtime_error: Bad port number.
*/
const class type& port_type(unsigned port) const
{
if(port >= port_count)
throw std::runtime_error("Invalid port index");
return *(port_types[port]);
}
/**
* Get number of ports.
*
* Returns: The port count.
*/
unsigned ports() const throw()
{
return port_count;
}
/**
* Get total size of controller data.
*
* Returns the size.
*/
unsigned size() const throw()
{
return total_size;
}
/**
* Get total index count.
*/
unsigned indices() const throw()
{
return _indices.size();
}
/**
* Look up the triplet for given control.
*
* Parameter index: The index to look up.
* Returns: The triplet (may not be valid).
* Throws std::runtime_error: Index out of range.
*/
index_triple index_to_triple(unsigned index) const
{
if(index >= _indices.size())
throw std::runtime_error("Invalid index");
return _indices[index];
}
/**
* Translate triplet into index.
*
* Parameter port: The port.
* Parameter controller: The controller.
* Parameter _index: The control index.
* Returns: The index, or 0xFFFFFFFFUL if specified triple is not valid.
*/
unsigned triple_to_index(unsigned port, unsigned controller, unsigned _index) const
{
size_t place = port * port_multiplier + controller * controller_multiplier + _index;
if(place >= indices_size)
return 0xFFFFFFFFUL;
unsigned pindex = indices_tab[place];
if(pindex == 0xFFFFFFFFUL)
return 0xFFFFFFFFUL;
const struct index_triple& t = _indices[pindex];
if(!t.valid || t.port != port || t.controller != controller || t.control != _index)
return 0xFFFFFFFFUL;
return pindex;
}
/**
* Return number of controllers connected.
*
* Returns: Number of controllers.
*/
unsigned number_of_controllers() const throw()
{
return controllers.size();
}
/**
* Lookup physical controller index corresponding to logical one.
*
* Parameter lcid: Logical controller id.
* Returns: Physical controller index (port, controller).
* Throws std::runtime_error: No such controller.
*/
std::pair<unsigned, unsigned> lcid_to_pcid(unsigned lcid) const
{
if(lcid >= controllers.size())
throw std::runtime_error("Bad logical controller");
return controllers[lcid];
}
/**
* Return number of legacy PCIDs.
*/
unsigned number_of_legacy_pcids() const throw()
{
return legacy_pcids.size();
}
/**
* Lookup (port,controller) pair corresponding to given legacy pcid.
*
* Parameter pcid: The legacy pcid.
* Returns: The controller index.
* Throws std::runtime_error: No such controller.
*/
std::pair<unsigned, unsigned> legacy_pcid_to_pair(unsigned pcid) const
{
if(pcid >= legacy_pcids.size())
throw std::runtime_error("Bad legacy PCID");
return legacy_pcids[pcid];
}
private:
type_set(std::vector<class type*> types, struct index_map control_map);
size_t* port_offsets;
class type** port_types;
unsigned port_count;
size_t total_size;
std::vector<index_triple> _indices;
std::vector<std::pair<unsigned, unsigned>> controllers;
std::vector<std::pair<unsigned, unsigned>> legacy_pcids;
size_t port_multiplier;
size_t controller_multiplier;
size_t indices_size;
unsigned* indices_tab;
};
/**
* Poll counter vector.
*/
class counters
{
public:
/**
* Create new pollcounter vector filled with all zeroes and all DRDY bits clear.
*
* Throws std::bad_alloc: Not enough memory.
*/
counters();
/**
* Create new pollcounter vector suitably sized for given type set.
*
* Parameter p: The port types.
* Throws std::bad_alloc: Not enough memory.
*/
counters(const type_set& p);
/**
* Destructor.
*/
~counters() throw();
/**
* Copy the counters.
*/
counters(const counters& v);
/**
* Assign the counters.
*/
counters& operator=(const counters& v);
/**
* Zero all poll counters and clear all DRDY bits. System flag is cleared.
*/
void clear() throw();
/**
* Set all DRDY bits.
*/
void set_all_DRDY() throw();
/**
* Clear specified DRDY bit.
*
* Parameter port: The port.
* Parameter controller: The controller
* Parameter ctrl: The control id.
*/
void clear_DRDY(unsigned port, unsigned controller, unsigned ctrl) throw()
{
unsigned i = types->triple_to_index(port, controller, ctrl);
if(i != 0xFFFFFFFFU)
clear_DRDY(i);
}
/**
* Clear state of DRDY bit.
*
* Parameter idx: The control index.
*/
void clear_DRDY(unsigned idx) throw();
/**
* Get state of DRDY bit.
*
* Parameter port: The port.
* Parameter controller: The controller
* Parameter ctrl: The control id.
* Returns: The DRDY state.
*/
bool get_DRDY(unsigned port, unsigned controller, unsigned ctrl) throw()
{
unsigned i = types->triple_to_index(port, controller, ctrl);
if(i != 0xFFFFFFFFU)
return get_DRDY(i);
else
return true;
}
/**
* Get state of DRDY bit.
*
* Parameter idx: The control index.
* Returns: The DRDY state.
*/
bool get_DRDY(unsigned idx) throw();
/**
* Is any poll count nonzero or is system flag set?
*
* Returns: True if at least one poll count is nonzero or if system flag is set. False otherwise.
*/
bool has_polled() throw();
/**
* Read the actual poll count on specified control.
*
* Parameter port: The port.
* Parameter controller: The controller
* Parameter ctrl: The control id.
* Return: The poll count.
*/
uint32_t get_polls(unsigned port, unsigned controller, unsigned ctrl) throw()
{
unsigned i = types->triple_to_index(port, controller, ctrl);
if(i != 0xFFFFFFFFU)
return get_polls(i);
else
return 0;
}
/**
* Read the actual poll count on specified control.
*
* Parameter idx: The control index.
* Return: The poll count.
*/
uint32_t get_polls(unsigned idx) throw();
/**
* Increment poll count on specified control.
*
* Parameter port: The port.
* Parameter controller: The controller
* Parameter ctrl: The control id.
* Return: The poll count pre-increment.
*/
uint32_t increment_polls(unsigned port, unsigned controller, unsigned ctrl) throw()
{
unsigned i = types->triple_to_index(port, controller, ctrl);
if(i != 0xFFFFFFFFU)
return increment_polls(i);
else
return 0;
}
/**
* Increment poll count on specified index.
*
* Parameter idx: The index.
* Return: The poll count pre-increment.
*/
uint32_t increment_polls(unsigned idx) throw();
/**
* Get highest poll counter value.
*
* - System flag counts as 1 poll.
*
* Returns: The maximum poll count (at least 1 if system flag is set).
*/
uint32_t max_polls() throw();
/**
* Save state to memory block.
*
* Parameter mem: The memory block to save to.
* Throws std::bad_alloc: Not enough memory.
*/
void save_state(std::vector<uint32_t>& mem);
/**
* Load state from memory block.
*
* Parameter mem: The block from restore from.
*/
void load_state(const std::vector<uint32_t>& mem) throw();
/**
* Check if state can be loaded without errors.
*
* Returns: True if load is possible, false otherwise.
*/
bool check(const std::vector<uint32_t>& mem) throw();
/**
* Set/Clear the frame parameters polled flag.
*/
void set_framepflag(bool value) throw();
/**
* Get the frame parameters polled flag.
*/
bool get_framepflag() const throw();
/**
* Get raw pollcounter data.
*/
const uint32_t* rawdata() const throw() { return ctrs; }
private:
uint32_t* ctrs;
const type_set* types;
bool framepflag;
};
class frame_vector;
/**
* Single (sub)frame of controls.
*/
class frame
{
public:
/**
* Default constructor. Invalid port types, dedicated memory.
*/
frame() throw();
/**
* Create subframe of controls with specified controller types and dedicated memory.
*
* Parameter p: Types of ports.
*/
frame(const type_set& p);
/**
* Create subframe of controls with specified controller types and specified memory.
*
* Parameter memory: The backing memory.
* Parameter p: Types of ports.
* Parameter host: Host frame vector.
*
* Throws std::runtime_error: NULL memory.
*/
frame(unsigned char* memory, const type_set& p, frame_vector* host = NULL);
/**
* Copy construct a frame. The memory will be dedicated.
*
* Parameter obj: The object to copy.
*/
frame(const frame& obj) throw();
/**
* Assign a frame. The types must either match or memory must be dedicated.
*
* Parameter obj: The object to copy.
* Returns: Reference to this.
* Throws std::runtime_error: The types don't match and memory is not dedicated.
*/
frame& operator=(const frame& obj);
/**
* Get type of port.
*
* Parameter port: Number of port.
* Returns: The type of port.
*/
const type& get_port_type(unsigned port) throw()
{
return types->port_type(port);
}
/**
* Get port count.
*/
unsigned get_port_count() throw()
{
return types->ports();
}
/**
* Get index count.
*/
unsigned get_index_count() throw()
{
return types->indices();
}
/**
* Set types of ports.
*
* Parameter ptype: New port types.
* Throws std::runtime_error: Memory is mapped.
*/
void set_types(const type_set& ptype)
{
if(memory != backing)
throw std::runtime_error("Can't change type of mapped frame");
types = &ptype;
}
/**
* Get blank dedicated frame of same port types.
*
* Return blank frame.
*/
frame blank_frame() throw()
{
return frame(*types);
}
/**
* Check that types match.
*
* Parameter obj: Another object.
* Returns: True if types match, false otherwise.
*/
bool types_match(const frame& obj) const throw()
{
return types == obj.types;
}
/**
* Perform XOR between controller frames.
*
* Parameter another: The another object.
* Returns: The XOR result (dedicated memory).
* Throws std::runtime_error: Type mismatch.
*/
frame operator^(const frame& another)
{
frame x(*this);
if(types != another.types)
throw std::runtime_error("frame::operator^: Type mismatch");
for(size_t i = 0; i < types->size(); i++)
x.backing[i] ^= another.backing[i];
return x;
}
/**
* Set the sync flag.
*
* Parameter x: The value to set the sync flag to.
*/
inline void sync(bool x) throw();
/**
* Get the sync flag.
*
* Return value: Value of sync flag.
*/
bool sync() throw()
{
return ((backing[0] & 1) != 0);
}
/**
* Quick get sync flag for buffer.
*/
static bool sync(const unsigned char* mem) throw()
{
return ((mem[0] & 1) != 0);
}
/**
* Get size of frame.
*
* Returns: The number of bytes it takes to store frame of this type.
*/
size_t size()
{
return types->size();
}
/**
* Set axis/button value.
*
* Parameter port: The port.
* Parameter controller: The controller
* Parameter ctrl: The control id.
* Parameter x: The new value.
*/
void axis3(unsigned port, unsigned controller, unsigned ctrl, short x) throw()
{
if(port >= types->ports())
return;
auto& t = types->port_type(port);
if(!port && !controller && !ctrl && host)
sync(x != 0);
else
t.write(&t, backing + types->port_offset(port), controller, ctrl, x);
}
/**
* Set axis/button value.
*
* Parameter idx: Control index.
* Parameter x: The new value.
*/
void axis2(unsigned idx, short x) throw()
{
index_triple t = types->index_to_triple(idx);
if(t.valid)
axis3(t.port, t.controller, t.control, x);
}
/**
* Get axis/button value.
*
* Parameter port: The port.
* Parameter controller: The controller
* Parameter ctrl: The control id.
* Return value: The axis value.
*/
short axis3(unsigned port, unsigned controller, unsigned ctrl) throw()
{
if(port >= types->ports())
return 0;
auto& t = types->port_type(port);
return t.read(&t, backing + types->port_offset(port), controller, ctrl);
}
/**
* Get axis/button value.
*
* Parameter idx: Index of control.
* Return value: The axis value.
*/
short axis2(unsigned idx) throw()
{
index_triple t = types->index_to_triple(idx);
if(t.valid)
return axis3(t.port, t.controller, t.control);
else
return 0;
}
/**
* Get controller display.
*
* Parameter port: The port.
* Parameter controller: The controller
* Parameter buf: Buffer to write nul-terminated display to.
*/
void display(unsigned port, unsigned controller, char32_t* buf) throw();
/**
* Is device present?
*
* Parameter port: The port.
* Parameter controller: The controller
* Returns: True if present, false if not.
*/
bool is_present(unsigned port, unsigned controller) throw()
{
if(port >= types->ports())
return false;
return types->port_type(port).is_present(controller);
}
/**
* Deserialize frame from text format.
*
* Parameter buf: The buffer containing text representation. Terminated by NUL, CR or LF.
* Throws std::runtime_error: Bad serialized representation.
*/
inline void deserialize(const char* buf);
/**
* Serialize frame to text format.
*
* Parameter buf: The buffer to write NUL-terminated text representation to.
*/
void serialize(char* buf) throw()
{
size_t offset = 0;
for(size_t i = 0; i < types->ports(); i++) {
auto& t = types->port_type(i);
offset += t.serialize(&t, backing + types->port_offset(i), buf + offset);
}
buf[offset++] = '\0';
}
/**
* Return copy with dedicated memory.
*
* Parameter sync: If set, the frame will have sync flag set, otherwise it will have sync flag clear.
* Returns: Copy of this frame.
*/
frame copy(bool sync)
{
frame c(*this);
c.sync(sync);
return c;
}
/**
* Compare two frames.
*
* Parameter obj: Another frame.
* Returns: True if equal, false if not.
*/
bool operator==(const frame& obj) const throw()
{
if(!types_match(obj))
return false;
return !memcmp(backing, obj.backing, types->size());
}
/**
* Compare two frames.
*
* Parameter obj: Another frame.
* Returns: True if not equal, false if equal.
*/
bool operator!=(const frame& obj) const throw()
{
return !(*this == obj);
}
/**
* Get the port type set.
*/
const type_set& porttypes()
{
return *types;
}
private:
unsigned char memory[MAXIMUM_CONTROLLER_FRAME_SIZE];
unsigned char* backing;
frame_vector* host;
const type_set* types;
};
/**
* Vector of controller frames.
*/
class frame_vector
{
public:
/**
* Framecount change listener.
*/
class fchange_listener
{
public:
/**
* Destructor.
*/
virtual ~fchange_listener();
/**
* Notify a change.
*/
virtual void notify(frame_vector& src, uint64_t old) = 0;
};
/**
* Construct new controller frame vector.
*/
frame_vector() throw();
/**
* Construct new controller frame vector.
*
* Parameter p: The port types.
*/
frame_vector(const type_set& p) throw();
/**
* Destroy controller frame vector
*/
~frame_vector() throw();
/**
* Copy controller frame vector.
*
* Parameter obj: The object to copy.
* Throws std::bad_alloc: Not enough memory.
*/
frame_vector(const frame_vector& vector);
/**
* Assign controller frame vector.
*
* Parameter obj: The object to copy.
* Returns: Reference to this.
* Throws std::bad_alloc: Not enough memory.
*/
frame_vector& operator=(const frame_vector& vector);
/**
* Blank vector and change the type of ports.
*
* Parameter p: The port types.
*/
void clear(const type_set& p);
/**
* Blank vector.
*/
void clear() throw()
{
clear(*types);
}
/**
* Get number of subframes.
*/
size_t size() const
{
return frames;
}
/**
* Get the typeset.
*/
const type_set& get_types()
{
return *types;
}
/**
* Access specified subframe.
*
* Parameter x: The frame number.
* Returns: The controller frame.
* Throws std::runtime_error: Invalid frame index.
*/
frame operator[](size_t x)
{
size_t page = x / frames_per_page;
size_t pageoffset = frame_size * (x % frames_per_page);
if(x >= frames)
throw std::runtime_error("frame_vector::operator[]: Illegal index");
if(page != cache_page_num) {
cache_page = &pages[page];
cache_page_num = page;
}
return frame(cache_page->content + pageoffset, *types, this);
}
/**
* Append a subframe.
*
* Parameter frame: The frame to append.
* Throws std::bad_alloc: Not enough memory.
* Throws std::runtime_error: Port type mismatch.
*/
void append(frame frame);
/**
* Change length of vector.
*
* - Reducing length of vector will discard extra elements.
* - Extending length of vector will add all-zero elements.
*
* Parameter newsize: New size of vector.
* Throws std::bad_alloc: Not enough memory.
*/
void resize(size_t newsize);
/**
* Walk the indexes of sync subframes.
*
* - If frame is in range and there is at least one more sync subframe after it, the index of first sync subframe
* after given frame.
* - If frame is in range, but there are no more sync subframes after it, the length of vector is returned.
* - If frame is out of range, the given frame is returned.
*
* Parameter frame: The frame number to start search from.
* Returns: Index of next sync frame.
*/
size_t walk_sync(size_t frame) throw()
{
return walk_helper(frame, true);
}
/**
* Get number of subframes in frame. The given subframe is assumed to be sync subframe.
*
* - The return value is the same as (walk_sync(frame) - frame).
*
* Parameter frame: The frame number to start search from.
* Returns: Number of subframes in this frame.
*/
size_t subframe_count(size_t frame) throw()
{
return walk_helper(frame, false);
}
/**
* Count number of subframes in vector with sync flag set.
*
* Returns: The number of frames.
*/
size_t count_frames() throw() { return real_frame_count; }
/**
* Recount number of frames.
*
* This is to be used after direct editing of pointers obtained by get_page_buffer().
*
* Returns: The number of frames.
*/
size_t recount_frames() throw();
/**
* Return blank controller frame with correct type and dedicated memory.
*
* Parameter sync: If set, the frame will have sync flag set, otherwise it will have sync flag clear.
* Returns: Blank frame.
*/
frame blank_frame(bool sync)
{
frame c(*types);
c.sync(sync);
return c;
}
/**
* Return number of pages in movie.
*/
size_t get_page_count() const { return pages.size(); }
/**
* Return the stride.
*/
size_t get_stride() const { return frame_size; }
/**
* Return number of frames per page.
*/
size_t get_frames_per_page() const { return frames_per_page; }
/**
* Get content of given page.
*/
unsigned char* get_page_buffer(size_t page) { return pages[page].content; }
/**
* Get content of given page.
*/
const unsigned char* get_page_buffer(size_t page) const { return pages.find(page)->second.content; }
/**
* Get binary save size.
*
* Returns: The number of bytes for binary save.
*/
uint64_t binary_size() const throw();
/**
* Save in binary form.
*
* Parameter stream: The stream to save to.
* Throws std::runtime_error: Error saving.
*/
void save_binary(binarystream::output& stream) const;
/**
* Load from binary form. May partially overwrite on failure.
*
* Parameter stream: The stream to load from.
* Throws std::bad_alloc: Not enough memory.
* Throws std::runtime_error: Error saving.
*/
void load_binary(binarystream::input& stream);
/**
* Check that the movies are compatible up to a point.
*
* Parameter with: The 2nd frame vector to check.
* Parameter frame: The frame number (1-based) to check to.
* Parameter polls: The poll counters within frame to check to.
* Returns: True if compatible, false if not.
*/
bool compatible(frame_vector& with, uint64_t frame, const uint32_t* polls);
/**
* Find subframe number corresponding to given frame (1-based).
*/
int64_t find_frame(uint64_t n);
/**
* Find frame number corresponding to given subframe (0-based).
*/
int64_t subframe_to_frame(uint64_t n);
/**
* Notify sync flag polarity change.
*
* Parameter polarity: 1 if positive edge, -1 if negative edge. 0 is ignored.
*/
void notify_sync_change(short polarity) {
uint64_t old_frame_count = real_frame_count;
real_frame_count = real_frame_count + polarity;
if(!freeze_count) call_framecount_notification(old_frame_count);
}
/**
* Set where to deliver frame count change notifications to.
*
* Parameter cb: Callback to register.
* Returns: Handle for callback.
*/
void set_framecount_notification(fchange_listener& cb)
{
threads::alock h(mlock);
on_framecount_change.insert(&cb);
}
/**
* Clear framecount change notification.
*
* Parameter handle: Handle to clear.
*/
void clear_framecount_notification(fchange_listener& cb)
{
threads::alock h(mlock);
on_framecount_change.erase(&cb);
}
/**
* Call framecount change notification.
*/
void call_framecount_notification(uint64_t oldcount)
{
std::set<fchange_listener*> tmp;
{
threads::alock h(mlock);
tmp = on_framecount_change;
}
for(auto i : tmp)
try { i->notify(*this, oldcount); } catch(...) {}
}
/**
* Swap frame data.
*
* Only the frame data is swapped, not the notifications.
*/
void swap_data(frame_vector& v) throw();
/**
* Freeze framecount notifications.
*/
struct notify_freeze
{
notify_freeze(frame_vector& parent)
: frozen(parent)
{
frozen.freeze_count++;
if(frozen.freeze_count == 1)
frozen.frame_count_at_freeze = frozen.real_frame_count;
}
~notify_freeze()
{
frozen.freeze_count--;
if(frozen.freeze_count == 0)
frozen.call_framecount_notification(frozen.frame_count_at_freeze);
}
private:
notify_freeze(const notify_freeze&);
notify_freeze& operator=(const notify_freeze&);
frame_vector& frozen;
};
private:
friend class notify_freeze;
class page
{
public:
page() {
memtracker::singleton()(movie_page_id, CONTROLLER_PAGE_SIZE + 36);
memset(content, 0, CONTROLLER_PAGE_SIZE);
}
~page() { memtracker::singleton()(movie_page_id, -CONTROLLER_PAGE_SIZE - 36); }
unsigned char content[CONTROLLER_PAGE_SIZE];
};
size_t frames_per_page;
size_t frame_size;
size_t frames;
const type_set* types;
size_t cache_page_num;
page* cache_page;
std::map<size_t, page> pages;
uint64_t real_frame_count;
uint64_t frame_count_at_freeze;
size_t freeze_count;
std::set<fchange_listener*> on_framecount_change;
size_t walk_helper(size_t frame, bool sflag) throw();
threads::lock mlock;
void clear_cache()
{
cache_page_num = 0;
cache_page_num--;
cache_page = NULL;
}
memtracker::autorelease tracker;
};
void frame::sync(bool x) throw()
{
short old = (backing[0] & 1);
if(x)
backing[0] |= 1;
else
backing[0] &= ~1;
if(host) host->notify_sync_change((backing[0] & 1) - old);
}
void frame::deserialize(const char* buf)
{
short old = sync();
size_t offset = 0;
for(size_t i = 0; i < types->ports(); i++) {
size_t s;
auto& t = types->port_type(i);
s = t.deserialize(&t, backing + types->port_offset(i), buf + offset);
if(s != DESERIALIZE_SPECIAL_BLANK) {
offset += s;
while(is_nonterminator(buf[offset]))
offset++;
if(buf[offset] == '|')
offset++;
}
}
if(host) host->notify_sync_change(sync() - old);
}
//Parse a controller macro.
struct macro_data
{
struct axis_transform
{
axis_transform() { coeffs[0] = coeffs[3] = 1; coeffs[1] = coeffs[2] = coeffs[4] = coeffs[5] = 0; }
axis_transform(const std::string& expr);
double coeffs[6];
int16_t transform(const button& b, int16_t v);
std::pair<int16_t, int16_t> transform(const button& b1,
const button& b2, int16_t v1, int16_t v2);
static double unscale_axis(const button& b, int16_t v);
static int16_t scale_axis(const button& b, double v);
};
enum apply_mode
{
AM_OVERWRITE,
AM_OR,
AM_XOR
};
macro_data() { buttons = 0; }
macro_data(const std::string& spec, const JSON::node& desc, unsigned i);
macro_data(const JSON::node& ser, unsigned i);
void serialize(JSON::node& v);
static JSON::node make_descriptor(const controller& ctrl);
const JSON::node& get_descriptor() { return _descriptor; }
static bool syntax_check(const std::string& spec, const JSON::node& ctrl);
void write(frame& frame, unsigned port, unsigned controller, int64_t nframe, apply_mode amode);
std::string dump(const controller& ctrl); //Mainly for debugging.
size_t get_frames() { return data.size() / get_stride(); }
size_t get_stride() { return buttons; }
size_t buttons;
std::vector<unsigned char> data;
std::vector<std::pair<unsigned, unsigned>> aaxes;
std::vector<unsigned> btnmap;
std::vector<axis_transform> adata;
std::string orig;
JSON::node _descriptor;
bool enabled;
bool autoterminate;
};
struct macro
{
macro_data::apply_mode amode;
std::map<unsigned, macro_data> macros;
void write(frame& frame, int64_t nframe);
macro() { amode = macro_data::AM_XOR; }
macro(const JSON::node& ser);
JSON::node serialize();
};
/**
* Get generic default system port type.
*/
type& get_default_system_port_type();
}
#endif